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Predicting response to therapy

Gene expression signatures using machine learning

Expression data from metastatic biopsies .
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Precision Medicine

* Early detection of individuals at risk of developing diseases, for improving preventive measures

* Enabling precise diagnosis of patients, with the aim of providing appropriate therapy
* Predicting the prognosis and treatment response, to enhance efficacy and reduce adverse

effects of treatment
* Development of novel therapeutics
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Precision Medicine

The precise characterization of health states, disease states, and therapeutic options for
affected individuals using multi-omics, imaging and phenotypic data, combined with medical
history, social/behavioral determinants, and the environmental knowledge

Transcriptomics

Artificial

Medical history intelligence/
Machine learning

Microbiome/
Metagenomics

Bastaki K, Umlai UKI and Jithesh PV (2023) Personalized Medicine. In Rahman M (Ed) Metabolomics — A path towards personalized medicine, Elsevier Academic Press



Disease Risk Prediction

Al-based integration of genetic and
medical imaging data for risk
assessment of Type 2 Diabetes

Samples with four image data
N =21,927
- Image data (# of variables)
ABD (28), CAU (29), BMD (85), ECG (10)

TWB1.0+TWBZ2.0 Imputation data
- Sample & Marker QC
N = 108,251 ; 9,814,910 SNPs

|
Samples with genome & image data
N =17,785
(1,366 cases / 16,419 controls)

Samples pass inclusion criteria
N=7,786
(1,118 cases / 6,668 controls)

No (N =7,342) New cohort ?

Inclusion criteria (Phenotype Def IV)

Case : Self-reported T2D +
HbA1c 2 6.5% or GLU-AC = 126 mg/dL

Control : Self-reported no T2D +
HbA1c = 5.6% & GLU-AC < 100 mg/dL

Yes (N =444)

l

Training data (64%) :oza:::— - <
N = 4,689 #Controls = 392
#Cases = 682 l
#Controls = 4,016

XGBoost
Validation data (16%) Demographic : Age, Sex, Family
N =1,175 N : i
’ Genetic : PRS (Fig. 2B)

#Cases =171
#Controls = 1,004

!

Testing data 1 (20%)
N = 1,469
#Cases =213
#Controls = 1,256

Image report: 152 variables

— Best model

l

Testing data 2

Further validation

GWAS summary statistics (From DIAGRAM)

EUR EAS SAS
N = 933,970 N = 283,423 N = 49,492
(80,154 Cases/ (56,268 Cases / (16,540 Cases /
853,816 Controls) 227,155 Controls) 32,952 Controls)
10,454,875 SNPs 9,106,250 SNPs 10,401,622 SNPs

A

1000 genome reference
1,297,432 SNPs

I

TWB1.0 + TWB2.0 imputation data
N=7,786 ;9,814,910 SNPs

I

PRS-CSx (Ruan et al., 2021) + PLINK
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PRSEuR PRSgas PRSsas
(502,049 SNPs) (484,307 SNPs) (514,858 SNPs)

Individual PRS

Huang, Y. J., Chen, C. H., & Yang, H. C. (2024). Al-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes.

Nature Communications, 15(1), 4230.



Precision Diagnosis

ldentifying facial phenotypes of genetic disorders using deep learning: DeepGestalt
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Nature medicine, 25(1), 60-64



Drug Repurposing

A foundation model for drug repurposing: TXGNN

b Deep learning models for drug
repurposing
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Drug repurposing Versus Zero-shot drug repurposing
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v Existing preclinical knowledge disease understanding disease understanding

v Lower development costs

v Improved efficacy across patient groups — Data point (relationship) - --- No data point (relationship)
v Faster clinical translation
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Drug Response Prediction

A deep learning library for drug response prediction: DeepDR
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Jiang, Z., & Li, P. (2024). DeepDR: a deep learning library for drug response prediction. Bioinformatics, 40(12), btae688.



Drug Discovery & Design

GenAl can create novel protein sequences with specific properties for designing
antibodies, enzymes, vaccines, and gene therapy

AlphaFold 3: Accurate structure prediction of biomolecular interactions
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Synthetic Data

Food Allergies e
GenAl can create synthetic patient and healthcare — / \

d a ta Ai:::l: ‘atopic’ i not nil Attribute: 'atopic’ is not nil

Useful for training Al models, simulating clinical P — \
. . . . L Simple J LCaIISubmoduIelCalI submodule'aIIergiesfsevere_allergic_reaction')

trials, or studying rare diseases without access to

large real-world datasets

Delay_For_PCP_Visit

LDeIay I 0-1 days)

( PCP_Visit_For_Food_Allergy \
LEncounter | SNOMED-CT[185347001]; Encounter for problem)

ﬂtribute: ‘food_allergy_careplan’ is ni

Food_Allergy_CarePlan

/ 7 \ | )
@ SNOMED-CT[326051000000105]: Self care
Assign to Attribute: ‘food_allergy_careplan'
CarePlanStart

Activities:
SNOMED-CT[409002]: Food allergy diet
SNOMED-CT[58332002]: Allergy education

Synthetic Patient Generation

else: 2%

Advise_To_Visit_Allergist ]
LSetAttribute | Set 'visit_allergist' = 'true' I

An open-source, synthetic patient generator that e

kEncounterEnd I End the current encounterJ

models the medical history of synthetic patients ]

( Living_with_Food_Anergies\
L Delay | 12 - 24 months )

1. age > 16 years
and Attribute: 'outgrew_food_allergies' is nil

Potential_To_Outgrow_Allergies w

else
LCaIISubmoduIe | Call submodule 'allergies/outgrow_food_allergies'

1. Attribute: 'outgrew_food_allergies' == true

( PotentiaI_AIIergic_Reaction_To_Foodw

L Simple J

https://synthetichealth.github.io/synthea/#thome



Patient Care Personalization

Chatbots using GenAl can provide responses based on a single
interaction. A person makes a query and the chatbot uses natural
language processing to reply . ol d

What is yout menopausa
Nice to meet you, Test. Porimencpausal

I'm Gia, a computer automated Genetic
Information Assistant from The Christ
Hospital

No

The
" Christ Hospital

Health Network Your provider asked me to discuss some Now let's talk about your breast health

Agentic Al uses sophisticated reasoning and iterative planning to -
Welcome m Breast Hoalth

* Your provider would like you to answer a fow
autonomously solve complex, multi-step problems S
4 walk you through the detads. and meets HIPAA requirements No
|

. At any time you can click the menu button ¢
- (=) to access additional options. No

If you want to change any of your
- : responses, click on the response or go to Okay. Now let's now talk about your blood
o E— the menu relatives’ medical history.

When you answer these questions, think
Sounds good
of your blood relatives. These can include
Start parents, brothers and sisters, half-
Let's start with the basics.
| —

siblings. children.

Data platform

‘ . Should Patient e
Have Testing? s
Q© T owe TEg W >
="

Patient Physician

How old are you?

A @ argenetics.com &

Demographics

Clinical Decision Support M m © a : é‘:é -
EC Workflow Prioritization & app.cleargenetics.com & app.cleargenetics.com
Lab Scheduling s

Other imaging Protocoling
Personal devices

@
a» v

Physician

SPECT MPI
\‘ Stress

” Rest

@l Imaging Data

@l Variables

Raw, *
Quantification

Stress and Clinical Variables
— Other Imaging Data

Diagnosis

DZ Extent hh
Risk Strategy v
Management Reporting ! - M

https://www.thechristhospitaI.com/Pages/PressReIeaseDetaiIs.aspx?reIeaseid=448&TermStoreId=65a.97a1




Harnessing Al for Precision Medicine: Challenges

Improving interoperability
& data accessibility

Fostering cross - disciplinary

Addressing issues of data -
collaborations

standards, quality and curation - - -

Monitoring & addressing
sources of bias

Acquiring & accessing expertise

Training datasets - improving
quality & representation

Protecting & preserving privacy

Promoting explainable Al

. = i Curtailing malicious
& algorithmic interpretability

or discriminatory Al use

Deciphering legal &

L Enhancing security measures
requlatory implications

Adopting flexible,

Establishing accountability scalable computing infrastructure

Demonstrating validity &
clinical utility

Building trust & demonstrating
trustworthiness

Managing hype

Interconnectivity between the various issues that will need to be addressed in order to advance the benefits of Al for precision medicine

https://www.phgfoundation.org/wp-content/uploads/2024/02/Artifical-intelligence-for-genomic-medicine.pdf
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Al & Precision Medicine: Market outlook

Global artificial intelligence market, 2017-2030 (US$M)

Global Precision Medicine Market BEveEe
Size, by Application, 2020 - 2030 (USD Billion) GRAND VIEW RESEARCH 2 000K

1 500k

16.3%
$87.58 W 1 000k
500k
2020 2021 2022 2023 2024 2026 2026 2027 2028 2029 2030 . R . .

@ Diagnostics Therapeutics 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Revenue, 2023 (US$M)
$196,633.9

Forecast, 2030 (US$M)
$1,811,747.3

CAGR, 2024 - 2030
37.3%

a4

X



Al & Precision Medicine: Market outlook

E‘rzcedence Artificial Intelligence in Healthcare Market Size 2023 to 2034 (USD Billion)

$ 613.81

$500.47

$ 361.35
$260.90
$188.38
$136.01
$98.20
s 26,69 $ 3696 35‘ 20’ .5. Towdsirds Al in Precision Medicine Market Size 2023 to 2034
$19.27 l I EEALTNCERD (USD Billion)
. .______ B

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

Source: htips://www.precedenceresearch.com/artificial-intelligence-in-healthcare-market

$8.55 |
$6.81 |
$5.43 s

so18 274 9344 - ' '
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Source: https://www.towardshealthcare.com



“Al will not replace you.
A person using Al will.”
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