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Please, consider this is work in 
progress !!!



Cancer Burden (leading cause of death)



Cancer Burden (leading cause of death)



Oman and Gulf Cooperation Council  cancer incidence

https://pmc.ncbi.nlm.nih.gov/articles/PMC11403302/



Cancer care continuum & surveillance 



Cancer Registry

• Track trends over time (Incidence, mortality 
and survival) 

• Allocate resources, prevention, screening and 
treatment

• Evaluate effectiveness of cancer programs 
and policies



Cancer Registration



Manual Cancer Registration



Challenges - Manual abstraction
• Expensive

• Prone to errors

• Affect quality, completeness, 

• Accuracy and timeliness data

• Un-sustainable



Manual abstraction --→ delayed reporting

Cancer incidence reports are often not 

available until 24 months or greater after 

a diagnosis



Solution 
using AI



Applies natural language processing (NLP) and deep learning 
algorithms to population-based cancer data 

To develop scalable NLP tools 
for deep text comprehension 
of unstructured clinical text 

To enable automated and 
accurate capture of reportable 
cancer surveillance data elements



Solutions - 
Automate Data 
collection 
using ML & NLP

Unstructured data 



Clinical text context is important 



Clinical text is temporal



NLP ETL Layer



Methods - NLP Pipeline



Methods - Annotation or labeling 
(Gold standard)



- Breast
- CRC
- Thyroid
- Prostate
- Lung



Objective 1
Consoloditate TNM staging from 

Clinical text 



Clinical text to TNM staging

“TUMOR INVADES INTO BUT NOT THROUGH VISCERAL PLEURA” 
=> stage T2

“8 LYMPH NODES NEGATIVE FOR TUMOR” => stage N0



Dataset



Results (TNM document-level)



Results (Patient-level)



Study 1 conclusions 

● Consolidation of M stage accuracy = (93%-98%)
● Consolidation of T and N different for each site

○ Colon accuracy: 80-90%
○ Prostate accuracy: 70-80%
○ Lung accuracy: 60-70%

● Colon staging criteria is easier

● 24% of lung cases un-staged due to missing information





Objective 2
Extraction of cancer registry data 

from un-structured pathology report 



Oman Cancer 
Registry Data



Methods - NLP 

DeepPhe REGEX

Regular expression rules to 
match directly text mentions of

1. cancer primary site
2. Histology
3. Grade
4. pathological TNM stage
5. summary stage



Methods - Clinical Text De-identification



Results 



Clinical text ambiguity 

● TX abbrev. for treatment

● Alpha-numeric terms:  T0012-9071, N13-129 

● MRI and biomarker references:
“SUBTLE AREA OF FOCAL T2 SIGNAL LOSS”
“weakly postitive for WT1

●  Some errors with partial matching of “M1” in middle of words:
AIM140.6 AIM111.1





Limitations 

- The unavailability of training data: Cancer reporting requires robust 

annotated training data that accurately represents the problem space.

 

- Frequent changes in coding standards

- Clinical guidelines: complicated and overlap



Methods - ensemble learning



Can Large language models (LMs) 
speed up the process of extracting 
clinical data from un-structured 
clinical notes for cancer registry 
automation?



● List of Investigators in the study

Dr AbdulRahman AlAbdulsalam (Computer Science) 
Dr. Rachid Hedjam (Computer Science)
Dr. Dr. Najla Al Lawati (Non-communicable diseases, head of cancer regisrtry, MOH)

● The study is funded by generous His-Majesty SR grant 

THANK YOU!
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