Building Trustworthy Medical AI Systems for Safe Clinical Deployment

Créer des systèmes d'IA médicale fiables pour un déploiement clinique sécurisé

Tal Arbel, PhD

Canada CIFAR AI Chair, Mila Professor, McGill University, Department of Electrical and Computer Engineering Director Probabilistic Vision Group, Medical Imaging Lab Centre for Intelligent Machines

Al for Personalized Medicine: The Dream and the Challenges

Clinical Scenario - Current Practice

• Variety of treatments available for this patient's illness

Clinical Scenario - Current Practice

- Variety of treatments available for this patient's illness
- Treatment decision: Average treatment efficacy across population

Clinical Scenario – Personalized Medicine

- Clinical and demographic information available
- **Treatment decision:** Average treatment efficacy conditioned on sub-group statistics

Promise of AI for Image-Based Personalized Medicine

- Integrate clinical, demographic and medical images into AI system
- Provide clinicians with an <u>AI tool</u> which predicts future individual treatment response on several treatments using <u>discovered image features</u>

Promise of AI for Image-Based Personalized Medicine

Integrate clinical, demographic and medical images into AI system

AI System

 Provide clinicians with an <u>AI tool</u> which predicts future individual treatment response on several treatments using <u>discovered image features</u>

i ∰Mila

Deep Learning Models Can Make (Potentially Deadly) Mistakes

ARTIFICIAL INTELLIGENCE

Hundreds of AI tools have been built to catch covid. None of them helped.

Commentary

Trustworthy medical AI systems need to know when they don't know

🔟 Thomas Grote

Correspondence to Thomas Grote, Ethics and Philosophy Lab, University of Tübingen, Tübingen 72076, Germany; thomas.grote@uni-

tuebingen.de

https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/

Lack of Interpretability of Deep Learning Models

This patient has pleural effusion

Deep Learning Models Can Be Biased

BRIEF REPORT | APPLIED MATHEMATICS | 👌

Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis

f y in B AI skin cancer diagnoses risk being less accurate for dark skin – study

Research finds few image databases available to develop technology contain details on ethnicity or skin type

(a) Male

(b) Female

https://www.pnas.org/doi/10.1073/pnas.1919012117

https://www.theguardian.com/society/2021/nov/09/ai-skin-cancer-diagnoses-risk-being-less-accurate-for-dark-skin-study

Talk

(1) **First** deep learning model for personalized medicine from patient images

(2) <u>Trustworthiness</u> and <u>reliability</u> of deep learning models needed in clinical applications:

- Uncertainty Estimation
- Explainability
- Improving fairness/biases

Vision-Language Foundation Models

Case studies: Multiple Sclerosis MRI; Chest Xrays

Case Study: Multiple Sclerosis

Most common neurological disease affecting young people; Canada has highest rate per capita.

https://macleans.ca/society/health/could-canada-cause-multiple-sclerosis/

Multi-focal brain lesions visible on MRI

Case Study: Multiple Sclerosis

Appearance of new/enlarging lesions on successive MRI scans important:

- MRI markers of new disease activity since previous scan
- Treatments exist to help suppress new lesions, manage symptoms (not to stop progression)
 - Different efficacies
 - Risk profiles, side effects, cost, availability, etc.

No Cure.

Deep Learning for Image-Based Precision Medicine

First DL model that learns data driven imaging markers predictive of future disease progression for individual patients on and off treatment

"Big Data": Largest dataset of MS patient images acquired during clinical trials

Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Deep Learning for Personalized Prediction of Future Outcomes on and off Treatment from Images

Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Deep Learning for Clinical Decision Support

Individual Future Treatment Outcome Estimates

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

Deep Learning for Clinical Decision Support

Predicting Future Treatment Effects

 \rightarrow Causal effect of treatment on the outcome for a patient

Estimating Future Personalized Treatment Response

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

Are we ready for clinical deployment?

₩Mila

Trustworthy Image-Based Personalized Medicine

- Uncertainty estimation
- Explainability
- Improving biases

Trustworthy Image-Based Personalized Medicine

AI makes mistakes! High risk in handing over to clinician

 \rightarrow What if we could quantify reliability of predictions in the form of uncertainty?

Trustworthy Treatment Effect Estimation

The Promise of AI for Image-Based Personalized Medicine

→ <u>AI tool</u> predicts patient will respond to both treatments <u>but is more confident in last one!</u>

Finding Responders in MS Clinical Trials

Selecting the patients with higher probabilities of response

 \rightarrow Model identified responders to drugs with high confidence <u>even with low efficacy drugs</u>!

- Patients have more options in the clinic
- Finds good candidates for trial enrichment

Durso-Finley et. al, "Improving Image-Based Precision Medicine with Uncertainty-Aware Causal Models", MICCAI 2023 [Shortlist Best Paper]

Temporal Prediction of Continuous Disease Trajectories and Treatment Effects

→ First AI model to learn disease evolution over time based on medical images

- Accurate predictions of future evolutions for disability progression in MS
- Models uncertainty over time
- Increased trust and treatment efficacy

Trustworthy Image-Based Personalized Medicine

- Uncertainty estimation
- Explainability
- Improving biases

Black box nature of deep learning models

Does this patient have pleural effusion?

Opening up the black box

Where was the model looking at when it made its prediction?

→ What are the specific image markers that are indicative of pleural effusion?

Hang et. al, Deep transfer learning to quantify pleural effusion severity in chest X-rays, BMC 2022

Explainability via Counterfactual Synthesis

 \rightarrow This person is sick. What would the person look like if they were healthy?

- \rightarrow <u>Goal</u>: Counterfactual images :
 - Show minimal changes
 - Belongs to the correct target class
 - Show realistic changes

Factual (Original) image: Pleural Effusion

Counterfactual (Synthesized) image: Healthy

Power of Vision-Language Models (VLMs)

 \rightarrow Vision-Language Foundation Models have been very successful at synthesizing high-resolution images

picture of an astronaut on mars with a rover

horse running by the side of the sea

30

Chest x-ray of a patient with...

No known disease

pleural effusion and support devices

cardiomegaly and no devices

Chest x-ray of a patient with...

No known disease

pleural effusion and support devices

Samples are generated via finetuned Stable Diffusion v1.5

cardiomegaly and no devices

No known disease

pleural effusion and support devices

Chest x-ray of a patient with...

cardiomegaly and no devices

Samples are generated via finetuned Stable Diffusion v1.5

Can we leverage PRISM for CF medical image generation?

PRISM: The Power of VLMs for CF Medical Image Generation

PRISM: *First* method to:

- Synthesize counterfactual image at high-resolution (512 x 512)
- Make precise changes to the original image guided by natural language

Chest x-ray of a patient with...

No Disease Sex: Male

Pleural Effusion

Male => Female

Let's see how it does...

35 Kumar, Kriz et. al, "Leveraging Vision-Language Foundation Models to Reveal Hidden Image-Attribute Relationships in Medical Imaging", MIV-CVPR Proceedings 2025

PRISM: The Power of VLMs for CF Medical Image Generation

PRISM [Our Method]

No Disease; Sex: Female

36 Kumar, Kriz et. al, "Leveraging Vision-Language Foundation Models to Reveal Hidden Image-Attribute Relationships in Medical Imaging", MIV-CVPR Proceedings 2025

PRISM: The Power of VLMs for CF Medical Image Generation

No Disease; Sex: Female

37 Kumar, Kriz *et. al*, "Leveraging Vision-Language Foundation Models to Reveal Hidden Image-Attribute Relationships in Medical Imaging", MIV-CVPR Proceedings 2025

Trustworthy Image-Based Personalized Medicine

- Uncertainty estimation
- Explainability
- Improving biases

Medical Imaging Biases – Beyond Known Attributes

Training samples

Example:

Patients with Pleural Effusion typically have variety of medical devices:

Chest drains; wires; tubes; pacemakers

Exposing Medical Image Biases

Classifier: Pleural Effusion

Exposing Medical Image Biases

Classifier: Pleural Effusion

41

A Difficult Task: Removing Medical Devices

 \rightarrow SOTA Counterfactual Images synthesized prior to PRISM

DeCoDex (SOTA before PRISM) struggled with removing all devices

Medical Devices: Chest drains; tubes; pacemakers

Factual (Original) image Patients with Medical Devices Counterfactual (Synthesized) image Patients without Medical Devices

→ Can PRISM remove all support devices using a single language prompt?

Fathi, Kumar et. al, "DeCoDEx", MIDL 2024 [Shortlist Best Paper]

PRISM: Removing Support Devices with Ease

Chest x-ray of a patient with a lot medical devices

 \rightarrow Chest x-ray of a patient without medical devices

 \rightarrow Easily removes all medical devices! No specific training labels for wires, pacemakers, etc.

PRISM: Explainability & Debiasing with VLMs

→ Does PRISM ignore all support devices when generating a CF image of a patient with a disease?

Chest x-ray of a patient with cardiomegaly \rightarrow

Chest x-ray of a patient with no finding

 \rightarrow Focuses on relevant features and ignores the confounding artifacts (wires)

PRISM: Discovering Hidden Relations Between Attributes

→ Does PRISM discover relationships between attributes, without explicitly training on them?

Chest x-ray of a patient with cardiomegaly \rightarrow Chest x-ray of a patient with no finding

Patient 1

Patient 2

- Removes disease & pacemaker
- Wasn't told about pacemaker!

→ Turns out pacemaker is a treatment for cardiomegaly!

45 Kumar, Kriz *et. al*, "Leveraging Vision-Language Foundation Models to Reveal Hidden Image-Attribute Relationships in Medical Imaging", MIV-CVPR Proceedings 2025

Technology Revolution – Fast Moving Age of Wonder

Achieving state of the art on new tasks *daily*

Umage generation CReport (diagnosis) generation Visual Question Answering

Question: Does this image have pleural effusion?

Answer: Yes, this chest X-ray shows evidence of pleural effusion. There appears to be blunting of the right costophrenic angle and increased opacity in the lower right hemithorax, which are characteristic radiographic signs of pleural effusion. The effusion appears to be unilateral (on the right side) and moderate in size based on this frontal (PA/AP) view.

Promise of Modern AI for Clinical Decision Support

Provide clinicians with <u>trustworthy</u> AI tools to predict future individual treatment response on different treatments using *multimodal data*

Thank you for your attention!

Probabilistic Vision Group

Collaborators

Douglas L. Arnold, Montreal Neurological Institute Nick Powlowski, MSR Mohammed Havaei, Google Research

Sponsors

This work was made possible by Biogen, BioMS, MedDay, Novartis, Roche / Genentech, and Teva who generously provided the data

Probabilistic Vision Group

Extra Slides

"Big Data" : MS Clinical Trials

- First federated clinical and MRI dataset large phase 3 MS clinical trials
- Tens of thousands of patients scans
 At multiple global imaging centres
 On multiple scanner technologies
- Large MRI volumes
 - Multiple imaging modalities
 - At multiple timepoints
 - With expert-generated lesion labels

Patient on different treatments of varying efficacy and on placebos

Earlier Methods – VAEs, CycleGANs

Ribeiro *et. al*, "High Fidelity Image Counterfactuals with Probabilistic Causal Models", ICML 2023

Earlier Methods – VAEs, CycleGANs

Causal Models", ICML 2023

CF (Synthesized) image (SOTA)

PRISM: Removing Support Devices with Ease More examples....

Chest x-ray of a patient with a lot of medical devices

 \rightarrow Chest x-ray of a patient without medical devices

All types of devices removed with a single text prompt!

Patient 2

VLMs for Medical Image Generation

Did the foundation model already learn all about radiological images?

What if we didn't fine-tune to our medical imaging dataset?

VLMs for Medical Image Generation

Did the foundation model already learn all about radiological images?

What if we didn't fine-tune to our medical imaging dataset?

They don't seem to know much about radiological images on their own...

PRISM: Explainability & Debiasing with VLMs

 \rightarrow Can VLM ignore all support devices when generating a CF image?

Chest x-ray of a patient with pleural effusion \rightarrow

Chest x-ray of a patient with no finding

