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The most important recent advances in machine learning are in

Supervised: requires human annotation no annotation required
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Problem: & 6‘

How do you know when

self-supervised learning is @
working well? ( E
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We turned to the brain'for help




Determining the geometry of representations in the brain

Stimuli Neural activity (n neurons) Representations

o*

Representation in
n dimensional space




Determining the geometry of representations in the brain

m X n matrix of
representations

m stimuli m representations
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Determining the geometry of representations in the brain

152 0.97 4.22
231
0.1

m stimuli

1.52 2.31 0.11
0.97 -
4.22

m representations

cross-correlation
matrix

—

m x n matrix of
representations

152 0.97 4.22
2.31
0.1

n neurons

m stimuli

Calculate the eigenvalues
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Determining the geometry of representations in the brain
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Variance captured
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Determining the geometry of representations in the brain
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Visual cortex has an eigenspectrum decay of roughly 1
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Hypothesis:

the geometry of
representations observed
in the brain is best for
general performance on
natural data
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1. Predict performance 2. Model selection

Can we predict how well a Can we select the best Al
deep neural network will models for downstream
perform on new data by applications using a?
comparing to brain’s a?
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a close to 1 predicts better performance
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a close to 1 predicts better performance
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a close to 1 predicts better performance

SciQA

Biology
Genes to traits
Classification
Adaptations

Traits and heredity

Ecosystems
Classification
Scientific names
Heredity

Ecological interactions

Cells
Plants
Animals

Plant reproduction

Earth Science

Weather and climate
Rocks and minerals

Astronomy
Fossils

Earth events
Plate tectonics

Physics Geography - |History Civics
Materials E State capitals E:}\ Colonial America Social skills S&4
Magnets Geography : English colonies in North America Government
Velocity and forces Maps The American Revolution The Constitution
Force and motion Oceania: geography World History Economics
Particle motion and energy Physical Geography Greece Basic economic principles
Heat and thermal energy The Americas: geography Ancient Mesopotamia Supply and demand i
States of matter Oceans and continents World religions Banking and finance
Kinetic and potential energy Cities American history Global Studies oS
Mixture States Medieval Asia /2 Society and environment S22
Chemistry Writing Strategies Vocabulary E]? Verbs
Solutions > Supporting arguments Categories Verb tense
Physical and chemical change Sentences, fragments, and run-ons Shades of meaning - Capitalization
Atoms and molecules Word usage and nuance Comprehension strategies Formatting
Chemical reactions Cregtive techniques Context clues Pancinaaan
Engineering Audience, purpose, and tone Grammar Fragments
Desioiing cioetiments % Pronouns and antecedents S

gning exp . : entences and fragments Phonology
Engineering practices Persuasive strategies = Phrases and clauses Rhvmi

Editing and revising Ef‘ youne

Units and Measurement Visual elements pb—r [ Figurative Language Reference
Weather and climate Opinion writing — |Literary devices @ Research skills
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a close to 1 predicts better performance
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Model selection for Barlow Twins

Representations

(for transfer tasks)
Distorted A
images ': Embeddings
Empirical Target
’ cross corr. Cross-corr.
l l L
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fo

B ZB/ feature
Y dimension

Encoder  Projector

Zbontar et al. (2021) ICML
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Model selection for Barlow Twins

Representations
(for transfer tasks)
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The values for A that bring a close to 1 lead to the best accuracy
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Conclusion

Self-supervised learning is critical to modern Al, but it is not obvious
how best to measure the quality of representations learned by
self-supervised learning - we took inspiration from the brain
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Conclusion

Self-supervised learning is critical to modern Al, but it is not obvious
how best to measure the quality of representations learned by
self-supervised learning - we took inspiration from the brain

Geometry of reps
What is the
geometry of the
representations in
a network (a)?
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Conclusion

Self-supervised learning is critical to modern Al, but it is not obvious
how best to measure the quality of representations learned by
self-supervised learning - we took inspiration from the brain
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Conclusion

Self-supervised learning is critical to modern Al, but it is not obvious
how best to measure the quality of representations learned by
self-supervised learning - we took inspiration from the brain
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Conclusion

Self-supervised learning is critical to modern Al, but it is not obvious
how best to measure the quality of representations learned by
self-supervised learning - we took inspiration from the brain
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Thanks for listening!
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