
State of Software Security:
Addressing the Threat of
Security Debt

Chris Wysopal
Chief Security Evangelist

World AI Summit 2024

October 10, 2024

Unites States Senate testimony - 19 May 1998

One of the 1st vulnerability researchers, member
of hacker think tank, L0pht in 1990s

3

Today we are finding
software security flaws faster

than we can fix them

4

Flaws accumulate faster than they’re fixed

5

6

Our EU customers

7

Let’s add the
exciting
potential of
large language
models that
can write code!

9

Generating code

Understanding code/Code review

Remediating defects

Translating programming languages

Creating and maintaining unit tests

Writing documentation

Developer GenAI use
right now

10

Learning about the code base

Searching for answers to avoid
reinventing the wheel

Reading log files to find a root
cause

Creating and running
functional & non-functional
tests

Remediating security
vulnerabilities

Emerging dev
uses for GenAI

›

Public GitHub
Repositories

Open-Source
Projects

Documentation
and

Comments

Thirds Party Code
(License Risk)

Training
Data Set

Large corpus of data
that includes open

web content.

Large Language Models used for coding

ChatGPT

Code
Generator

Gemini

…

User Result

41%
41% of Copilot produced

code contain known
security vulnerabilities.

Large
Language

Model

…

User Prompt

Security Implications of LLMs

Wuhan University Study
on AI Code Generators

Stanford University Study
on AI Code Generators

New York University Study
on GitHub Copilot

Purdue University
on ChatGPT accuracy

36%
Out of the 435 Copilot generated

code snippets found in repos
36% contain security
weaknesses, across 6

programming languages.

Developers using LLMs were
more likely to write insecure

code.

They were more confident their
code was secure.

41%
Of 1689 generated programs 41% of

Copilot produced programs
contained vulnerabilities

52%
52% of ChatGPTs answers were

incorrect.
Developers preferred them 35%

of the time yet 77% of those
answers were wrong

13

What is Veracode
seeing across our
customer base?

Our approach and methodology

This research draws
from the following:

1,007,133
applications across
all scan types

1,553,022
dynamic analysis
scans

11,429,365
static analysis scans

All those scans
produced:

96.0 million
raw static findings

4.0 million
raw dynamic findings

12.2 million
raw software composition
analysis findings

15

Where is the security debt?

While first-party code

constitutes almost

90% of all security debt

65% of critical debt comes

from third-party code in

open-source libraries

16

EU customer breakdown is similar
A

ll
EU

C

us
to

m
er

s
se

ct
or

17

Remediation capacity
is constrainedOnly 64% of applications demonstrate

a sustained capacity to eliminate all

critical security debt.

Only two out of ten applications show

an average monthly fix rate that

exceeds ten percent of all security

flaws.

This means few teams bail fast

enough to reverse the tide of

debt once it starts rising.

18

Prioritization is the key

Only 15 percent of all flaws are critical flaws.

This subset of flaws represents pound-for-pound the greatest

risk exposure to your applications. Prioritize that 15 percent, and,

while you won’t eliminate all security debt, you will achieve a goal

of maximum risk reduction with focused effort.

If the rate of new and existing flaws exceeds

the capacity to remediate them, then

prioritizing which flaws to remediate is

essential.

© Veracode, Inc. 2024 Confidential 19

EU apps may require more fix capacity

All Customers EU Customers

20

Managing security debt:
fix flaws faster!

Development teams that fix
flaws fastest are four times less
likely to let critical security debt
materialize in their applications.Speed at which

developer teams
fix flaws

21

Takeaways

22

Key learnings from the SoSS report

• Code velocity is on the rise, in part thanks to generative AI

• More code will result in more security debt because
generated code exhibits all of the same security weaknesses
as human-written code

• Development teams…

• …allocate very little capacity to fixing security flaws

• …and often do not prioritize the most critical flaws

23

Techniques for tackling security debt

• Increase capacity: the amount of time development teams
dedicate to fixing security flaws is a choice not an inherent
limitation

• Prioritize wisely: fix critical flaws (debt and non-debt) before
non-critical flaws to reduce the most risk

• Build security habits: scan and fix regularly; teams that fix
flaws the fastest accumulate 4x less critical security debt

• Fix faster: AI-assisted fixing has the potential to help
developers fix more flaws in the same amount of time

24

Thank You!

Visit Veracode at booth W36

	Slide 1: State of Software Security: Addressing the Threat of Security Debt
	Slide 2: One of the 1st vulnerability researchers, member of hacker think tank, L0pht in 1990s
	Slide 3: Today we are finding software security flaws faster than we can fix them
	Slide 4: Flaws accumulate faster than they’re fixed
	Slide 5
	Slide 6: Our EU customers
	Slide 7
	Slide 8
	Slide 9: Developer GenAI use right now
	Slide 10: Emerging dev uses for GenAI
	Slide 11
	Slide 12
	Slide 13: What is Veracode seeing across our customer base?
	Slide 14
	Slide 15: Where is the security debt?
	Slide 16: EU customer breakdown is similar
	Slide 17: Remediation capacity is constrained
	Slide 18: Prioritization is the key
	Slide 19: EU apps may require more fix capacity
	Slide 20: Managing security debt: fix flaws faster!
	Slide 21: Takeaways
	Slide 22: Key learnings from the SoSS report
	Slide 23: Techniques for tackling security debt
	Slide 24: Thank You! Visit Veracode at booth W36

