Learning Causal Representations
Apprentissage de représentations causales
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Why causality in machine learning?

e ML researchers are becoming more concerned with robustness of their
model to out-of-distribution generalization

o One way: use causal models
o Handle interventions

e E.g.inreinforcement learning, policy applications, etc. -> need to model the
effect of interventions



Learning causal representations

e But what if you don’t even know e Motivating example:
the identity of causal variables
(high level semantic variables)?

o ->need to learn them!
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Disentanglement via Mechanism Sparsity Regularization:
A New Principle for Nonlinear ICA
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Motivating Example L atent factors)
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Disentanglement is the
problem of recovering the latent
factors without supervision,

i.e. from p(x)
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Our identifiability theory Xt (Observation)

shows how to use this sparsity
to disentangle the latent factors
via sparsity regularization

|dentifiable
from p(x)?
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Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA



The general problem of identifiability for generative models

Consider the following simple generative model:

X =£(2) = Px__

Consider this other model: [l  Both models represent the
same distribution over X...

: L ~
G =UZDX :=t(U"' 7) = Py
... but their representations \/_/

can be drastically different f.



What is disentanglement?

(Ground-truth) Z — Rdz Z Rdz (Learned)

(Ground-truth decoder) f f (Learned decoder)

(Data manifold) X - Rdaz (Observation space)



Bird's-eye view of our approach

e Mustlearn
o adecoder f

o a latent transition model p(z’ | 2<%, a<*)-> parameter )\
o Causal graph over the latents/actions G

e Our theory shows how regularizing G to be
sparse will help us identify the latent variables,
l.e. to have a disentangled representation.

(Learnable parameters: 0 := (f, A, G))

[Useful to think of
0 = parameter of the ground-truth model

HA or é = parameter of the learned model
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Our Theorem: Disentanglement via Mechanism Sparsity

(informally)

e If § and é’ model the same distribution on X

e [f the ground truth transition is “sufficiently complex”

e If we ensure our predicted graph is as sparse as the ground truth graph (this
can be done via regularization)

e If the ground truth graph is sufficiently sparse (precise in paper)

Then 6 and 6 are permutation-equivalent

i.e. the model 0 is disentangled.

-> Generalized to no constraints on ground truth graph to get block-permutation equivalence in
paper “Partial Disentanglement via Mechanism Sparsity”, [Lachapelle & Lacoste-Julien, arXiv 2022]
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Our proposed method

Model transition model and decoder via neural networks

Use binary masks to encode transition graphs

Use VAE approach to do approximate maximum likelihood on data

Use Gumbel-softmax trick to learn discrete masks — estimate gradients via

reparameterization trick [Jang et al., 2017, Maddison et al., 2017]
o Can also easily do 10-regularization (sparse graphs) with it
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Synthetic Toy Experiments

__Time-sparsity

Action-sparsity
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Ongoing work: experiments on Atari games
(e.g. pong)



Other work: causal graphical model learning
when you know the causal variables



Differentiable Causal Discovery from

Interventional Data
(DCDI) NeurlPS 2020

Philippe Seébastien Alexandre Simon Alexandre
Brouillard * Lachapelle* Lacoste Lacoste-Julien Drouin
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Structure Learning (from interventional data)

Taxonomy of score-based algorithms (non-exhaustive)

Discrete optim.

Continuous optim.

g L Linear GES NOTEARS

= ' [Chickering, 2003] [Zheng et al., 2018]

c ‘

D) /

a8 / Nonlinear CAM GraN-DAG

@) g i [BUhlmann et al., 2014] [Lachapelle et al., 2020]
o % Linear GIES :

o ' [Hauser & Blihimann, 2012]

oy Nonlinear Interventional CAM DCDI

r </ [Hidden in source code] [Brouillard et al., 2020]
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Conclusion & outlook

e Early steps to learn causal variables from high dimensional data
o By exploiting sparsity of interactions

e Still need to experiment with more realistic data

e Follow-up work showing the benefit of approach for multi-task learning with
sparse parameters with sufficient variability across tasks

e Still space for algorithmic improvements, scaling and more theory (finite
sample analysis,etc)

e Potential for model-based reinforcement learning
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