Optimal Control and Machine Learning in Robotics

Mo Chen | mochen@cs.sfu.ca

Multi-Agent Robotic Systems Lab | <u>https://sfumars.com</u>

CIFAR AI Chair, Amii Fellow, NCRN Distal Fellow School of Computing Science, Simon Fraser University

Optimal Control and Machine Learning

Machine learning challenges

- Data efficiency and exploration
- Generalization

Solutions aided by optimal control

- Global guidance in exploration
- Low-level execution

Outline

- Using control to improve data efficiency and exploration in RL
 Global guidance via value functions from control
- Using control to improve generalization in learning
 - Follow-ahead robot using RL and control

Guiding Reinforcement Learning

• Reinforcement learning:

- Formalizes the idea of trial and error to train agents to behave in ways that are increasingly rewarding
- Can require **a lot** of trial and error due to the challenge of exploration

Reinforcement Learning (Policy Gradients)

- 1. Try to perform a given task using the current policy many times
- 2. Adjust policy based on how well the task is performed
 - Goodness of performance measured by accumulated reward
 - But how good is good?
 - Performance is compared to baselines
 - Baselines are also learned from experience
 - Often, estimated by the value network / critic
 - But exploration is hard...

Baselines of Comparison

- Ideally, the baseline should be the optimal behaviour
 - But if we have the optimal behaviour, we've already solved the problem

- Optimal control-based approach:
 - Solve a **simplified version of the problem** using optimal control
 - Use the solution to the simplified problem as the baseline
 - Compatible and modular with respect to RL algorithms

Baseline From Control

- Consider a simplified version of the problem
 - Approximate dynamics: $\dot{\hat{s}} = \hat{f}(\hat{s}, \hat{u})$
 - Solution via dynamic programming \rightarrow value function $\hat{V}(\hat{s})$
 - Solution via MPC $\rightarrow \tau_i = (s_{0,i}, a_{0,i}, s_{1,i}, a_{1,i}, \dots) \rightarrow \text{value function } \hat{V}(\hat{s})$

TurtleBot Environment

Learning algorithm: PPO

Quadrotor Environment

Trap Environment

Outline

- Using control to improve data efficiency and exploration in RL
 Global guidance via value functions from control
- Using control to improve generalization in learning
 - Follow-ahead robot using RL and control

People Following Robots

Following Ahead

• Currently, robots can follow behind and follow beside a person

• "Following" ahead or in front of a person is much harder

• Challenge:

- Predict the future trajectory of the person
- Find a feasible and safe way to navigate ahead

WARDENER SHIT

INCOME IN

Ahead

Behind

HE

TEE

iii05

HILDS MARTIN

Ahead-right

Ahead-left

High Level Idea

- 1. Predict human navigational intent
 - Difficult for model-based methods
 - Use data-driven method
- 2. Move in front of the human
 - Easy if we know where the robot should go
 - Use control-based methods
 - No need to learn what we already know

Nikdel et al., "LBGP: Learning Based Goal Planning for Autonomous Following in Front," ICRA 2021.

Task Decomposition

- 1. High-level decision-making
 - Choose where to go (output robot navigational goal)
 - Reinforcement learning with curriculum learning
- 2. Low-level execution
 - Classical timed-elastic band (TEB) planner navigates the robot toward the goal
 - No need to learn what we already know

Nikdel et al., "LBGP: Learning Based Goal Planning for Autonomous Following in Front," ICRA 2021.

Curriculum Reinforcement Learning

• Simulate increasingly difficult human trajectories

• Training done in simulation

Circular

Straight

• Using Distributed Distributional Deterministic Policy Gradients

Smooth

Arbitrarily drawn

- Observation space: history of relative pose of robot wrt human
- Action space: short term robot navigational goal (waypoint)
- Reward: based on relative pose of robot wrt human
- Zero-shot simulation to reality transfer to unseen human trajectories

Reward function

Our method (LBGP)

iii05

Ahead-right

HALDEND SHI

HALEND IN

Ahead-left

Ahead

Our method (LBGP)

Ahead

WHERE THE

THE SALES

Ahead-left

Behind

Ahead-far-left

Summary

- Using control to improve data efficiency and exploration in RL
 Global guidance via value functions from control
- Using control to improve generalization in learning
 - Follow-ahead robot using RL and control

Thank You!

Mo Chen | mochen@cs.sfu.ca

Multi-Agent Robotic Systems Lab | <u>https://sfumars.com</u>