Comprehensive AI Evaluation Framework Applied to COVID-Related AI Studies

Associate Professor Sandeep Reddy, School of Medicine, Deakin University

Outline

- Context
- TEHAI and components
- Scoring Mechanism and Uses
- Application
- Review Process
- Findings
- Learning
- Discussion

Context

- Progress in artificial intelligence (AI) has opened new opportunities
- However, in limited assessments that have taken place so far, it has been found AI systems have fallen short of their translational goals
- This is because many AI systems have intrinsic inadequacies that don't get assessed until after deployment
- Utilising and integrating AI systems in clinical settings can be potentially expensive and disruptive
- Therefore, a rigorous evaluation that assesses AI systems early and at various stages of their deployment can support or contradict the use of a specific AI tool

Context

- Currently available evaluation frameworks generally focus on the reporting and regulatory aspects
- It is evident there is an absence of an evaluation framework that assesses various stages of development, deployment, integration and adoption of AI systems
- Dependence on disparate evaluation frameworks to assess different aspects and phases of AI systems is unrealistic
- Also, currently available evaluation and reporting frameworks fall short in adequately assessing the functional, utility, and ethical aspects of the models

Translational Evaluation of Healthcare AI (TEHAI)

- To address the gap in currently available evaluation frameworks, an international team of medical researchers and data scientists was constituted to develop TEHAI
- Following constitution of the team, we considered the evaluation and research principles that would inform the development of the framework
- Based on these principles and a critical review of related literature including frameworks and guidelines, the project team identified the key components developed the initial version of the TEHAI over a period of six months.

Translational Evaluation of Healthcare AI (TEHAI)

- To provide a layer of independent review before finalization of TEHAI, the draft consensus framework was then reviewed by an international panel
- The eight-member international panel had expertise in medicine, data science, healthcare
 policy, biomedical research and healthcare commissioning, and were drawn from the
 United Kingdom, United States of America and New Zealand
- The panel members were provided the framework and documentation and after, meetings were convened with panel members to receive their feedback.
- Following collation of the feedback from the expert panel, TEHAI was refined to incorporate panel members feedback and was then finalised

TEHAI

TEHAI

1. Capability

- •1.1.Objective
- •1.2. Use Case
- 1.3. Dataset Source and Integrity
- 1.4. Performance
 Metrics
- •1.5. Internal Validity
- 1.6. External Validity

2. Utility

- 2.1. Generalisability and Contextualisation
- 2.2. Safety and Quality
- 2.3. Transparency
- •2.4. Privacy
- 2.5. Non-Maleficence

3: Adoption

- •3.1. Use in a Healthcare Setting
- 3.2. Number of Services
- 3.3. Alignment with Domain
- •3.4. Technical Integration

TEHAI

TEHAI Components

Capability: This component assesses the intrinsic technical capability of the AI system to perform its expected purpose, by reviewing key aspects as to how the AI system was developed

Utility: This component evaluates the usability of the Al system across different dimensions including the contextual relevance, and safety and ethical considerations. It also assesses the efficiency of the system

Adoption: This component appraises translational value by evaluating key elements that demonstrate the adoption of the model in real life settings

TEHAI Scoring

Component	Sub-component	Initial Score	Weight	Subcomponent Score	= Initial Score x Weight
	Objective of Study		10		
	Dataset Source and Integrity		10		0-9 10-14
Complete	Internal Validity		10	77.1.5	
Capability	External Validity	0-3	10	Weight 5	15 and above
	Performance Metrics		10		
	Use Case		5		
	Generalizability and Contextualisation		10		
6/10/	Safety and Quality	1 -	10		0-19
Utility	Transparency	0-3	10		20-29
	Privacy		10		30 and
	Non-Maleficence		10		above
	···			Weight 10	
	Use in a Healthcare Setting		10	2000	
	Technical Integration	1	10		
Adoption	Number of Services	0-3	5		
	Alignment with Domain	-	5	<u> </u>	

TEHAI usability

Dataset Source and Integrity	Transparency	Internal Validity		ck	External Validity	Privacy			ck		465
Objective	Use Case	Performance Metrics	-	Deployment Check	Generalizability and Contextualization	Technical Integration	Safety and Quality	H	Discernment Check	Non-Maleficence	Use in a Healthcare Setting
Pre-Development Phase	Pre-Development Phase	Development Phase		D	Pre-Deployment Phase	Deployment Phase	Post-Deployment Phase		Di	Short Term Phase	Mid Term Phase

Most Read Articles

REVIEW:

Evaluation framework to guide implementation of Al systems into healthcare settings 12 October, 2021 3

ORIGINAL RESEARCH:

Reliability of COVID-19 symptom checkers as national triage tools: an international case comparison study 18 October, 2021 6

COMMUNICATION:

A step-by-step guide to peer review: a template for patients and novice reviewers 19 August, 2021 3

RESEARCH ARTICLE:

Using the Internet as a source of information and support: a discussion paper on the risks and benefits for children and young people with long-term conditions 1 January, 2015

ORIGINAL RESEARCH:

User testing of a diagnostic decision support system with machine-assisted chart review to facilitate clinical genomic diagnosis 7 May, 2021

Publication

Reddy, S et al. (2021). Evaluation framework to guide implementation of AI systems into healthcare settings. *BMJ Health & Care Informatics* 2021;**28**:e100444.

Application

- The emergence of the COVID-19 pandemic has resulted in several papers outlining the utility of AI in tackling various aspects of the disease like diagnosis, treatment, and surveillance
- Some recent reviews have outlined how most of these studies or the Al applications presented in these studies have shown minimal value for clinical care
- To further assess the translational gaps of the COVID-19 Al studies, we decided to apply TEHAI to COVID-19 Al studies

Systematic Review

Evaluation Process

- Evaluation and data extraction was conducted using Covidence software
- A combined data extraction / quality assessment template based on the TEHAI framework was created in Covidence to facilitate this
- Reviewer roles were randomly assigned across the evaluation team
- Each paper was viewed by two reviewers who independently evaluated the paper against the elements of the TEHAI framework and extracted relevant data
- Evaluation scores and extracted data from each reviewer were compared by a third reviewer for agreement. This third reviewer also resolved any discrepancies

- 10 Reviewers reviewed a total of 102 manuscripts
- On raw scores, "capability" scored the highest compared with "utility" and "adoption"

Component	2-point average	3-point average
Capability	53 percent	8 percent
Utility	20 percent	4 percent
Adoption	27 percent	1 percent

- We extracted the machine learning models used in COVID-19 studies and found that Convolutional Neural Network (CNN) was the most used machine learning model followed by the Random Forest (RF) algorithm
- It shows that automatic feature extraction based on deep learning models are becoming more prevalent in the clinical data analysis

- Based on the average score and variability of data per question for both non-imaging and imaging studies, Non-imaging studies scored better than imaging studies in objective, safety and non-maleficence and number of services
- While imaging studies scored higher than non-imaging studies external validity

- The average score, variability of score and P values for both big and small datasets.
- The P-values with less than 0.01 and 0.001 are presented with * and ** respectively

					Capability			
Study	Author	Objective of Study	Dataset Source and Integrity	Internal Validity	External Validity	Performance Metrics	Use Case	Final Score
COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images.	Afshar et al 2020	30	30	20	30	20	10	140
Development and evaluation of an artificial intelligence system for COVID-19 diagnosis.	Jin et al 2020	30	20	30	20	20	10	130
Development and external validation of a prediction risk model for short-term mortality among hospitalized U.S. COVID-19 patients: A proposal for the COVID-AID risk tool.	Hajifathalian et al 2020	30	20	20	20	20	10	120
4S-DT: Self Supervised Super Sample Decomposition for Transfer learning with application to COVID- 19 detection	Abbas et al 2020	10	30	20	20	20	15	115

	Utility										
Study	Author	Generalizability and Contextualisation	Safety and Quality	Transparency	Privacy	Non- Maleficence	Final Score				
Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study.	An et al 2020	20	20	30	20	10	100				
Prognostic Modeling of COVID-19 Using Artificial Intelligence in the United Kingdom: Model Development and Validation.	Abdulaal et al 2020	20	0	30	20	10	80				
Extracting Possibly Representative COVID- 19 Biomarkers from X- ray Images with Deep Learning Approach and Image Data Related to Pulmonary Diseases	Apostolopoulos et al 2020	30	10	30	10	0	80				

Adoption									
Study	Author	Use in a Healthcare Setting	Technical Integration	Number of Services	Alignment with Domain	Final Score			
Predicting CoVID-19 community mortality risk using machine learning and development of an online prognostic tool.	Das et al 2020	30	20	10	10	70			
Development and external validation of a prediction risk model for short-term mortality among hospitalized U.S. COVID-19 patients: A proposal for the COVID-AID risk tool.	Hajifathalian et al 2020	30	20	5	10	65			
Identification of risk factors for mortality associated with COVID-19.	Yu et al 2020	20	20	10	10	60			
Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography.	Zhang et al 2020	10	20	10	10	50			
Using Artificial Intelligence for COVID- 19 Chest X-ray Diagnosis.	Borkowski et al 2020	10	20	0	10	50			

Learning

- In TEHAI, equal weighting is placed on both internal and external validity. From a translational point of view, the model performance should extend beyond the test environment and perform well on external datasets
- In relation to this, the top scoring studies in the capability component performed well in these measures
- Afshar et al(17) utilised pre-training and transfer learning of their capsule network model on an external dataset of 94,323 X-ray images
- Jin et al(14) utilised a combination of three medical centres and four public datasets to compile 11,356 CT scans to test their Al model

Learning

- The 'utility' component assesses how safely can the Al model be used in healthcare
- Very few studies scored well across the criteria and scored poorly especially with the safety and quality and non-maleficence subcomponents
- One of the distinguishing aspects of TEHAI framework compared to other evaluation framework is its assessment of how well the Al model is adopted
- This is assessed through the actual use of the AI model in health services or healthcare delivery. Considering many of the COVID-AI models were experimental and the time frames we assessed were short, very few included studies did well in the component
- The top-ranking study in this component was an online COVID-19 mortality prediction model that was deployed as an open-source tool making it highly accessible and adoptable.

In conclusion

- TEHAI- A comprehensive evaluation framework
- Three main components (Capability, Utility and Adoption) and 15 subcomponents
- Can be used in development, deployment and discernment stages
- Applied to COVID-19 Al studies
- Very few studies have a translational component i.e., did poorly in utility and adoption components
- Therefore, evaluation has to in-built in product/application development cycle

Discussion/Questions

