End-to-End Al-driven Robotic Drug Discovery and Case Study of the First Al-Discovered and Al-Designed Therapeutic in Human Clinical Trials

Insilico Medicine Alex Zhavoronkov, PhD, CEO alex@insilico.com

Disclaimer

- This presentation and the accompanying slides (this "Presentation"), which have been prepared by Insilico Medicine ("Insilico", or the "Company" or together with its subsidiaries, collectively the "Group"), are for informational purposes only and are not intended to be, and shall not be constructed as, an offer, inducement, invitation, solicitation, commitment or advertisement with respect to the purchase or subscription or sale of any securities, and shall not form the basis for or be relied on in connection with any contract or binding commitment whatsoever. This Presentation is strictly confidential, not for public dissemination and is only being furnished to you and may not be photocopied, reproduced or distributed to any other persons at any time without the prior written consent of the Group. This Presentation has been prepared by the Group based on information and data which the Group considers reliable, but the Group makes no representation or warranty, express or implied, whatsoever, and no reliance shall be placed on, the truth, accuracy, completeness, fairness and reasonableness of the contents of this Presentation. This Presentation may not be all inclusive and may not contain all of the information that you may consider material. Any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from any use of the contents of this Presentation or otherwise arising in connection therewith is expressly excluded.
- Certain matters discussed in this Presentation may contain forward-looking statements that are, by their nature, subject to significant risks and uncertainties, including the risk factors described in this presentation. Forward-looking statements can be identified by words such as "may", "will", "should", "could", "believe", "expect", "anticipate", "intend", "plan", "continue", "seek", "estimate" or the negative of these terms or other similar terms. Such forward-looking statements are not guarantees of future performance and are subject to known and unknown risks, uncertainties and assumptions that are difficult to predict. The Group's actual results, levels of activity, performance or achievements could differ materially and adversely from results expressed in or implied by this Presentation, including, amongst others: the sustainability of recent growth rates; the anticipation of the growth of certain market segments; the positioning of the Group's products and services in those segments; the competitive environment; and general market conditions. The Group assumes no obligation to update any forward-looking information contained in this Presentation. Any forward-looking statements and projections made by third parties included in this Presentation are not adopted by the Group and the Group is not responsible for such third-party statements and projections.

Insilico Medicine: Transforming the drug discovery and development process with an *end-to-end next-generation AI platform*

Traditional drug R&D takes >10 years and >\$2B*

From the discovery to the launch of a new drug

^{*} Modified from Paul et al, How to improve R&D productivity: the pharmaceutical industry's grand challenge.

Nature Reviews Drug Discovery, 2010

** Based on interviews with the pharmaceutical industry executives

AI Platform - Pipeline of Therapeutics

- Over 40 CROs in China with dedicated managers from Insilico
- Expert CRO management, with local supervision, best FTE selection, security protocols, data and IP protection
- Focus on speed, quality, and accuracy with direct local supervision

Integrated AI-Driven End-to-End Drug Discovery and Development Platform

Chemistry42

On-Premises Deployment

Explore uncharted chemical space

- An automated end-to-end machine learning platform
- Novel & diverse molecules for targets of interest
- Structure- and ligand-based drug design strategies

InClinico

Design & predict clinical trial outcomes

- · Predict success rates of clinical trials
- · Identify weak areas in trial design early
- Adopt best practices guided by InClinico

Internal Pipeline Discovered Using Pharma. Al Platform

Multiple assets entering PCC in 2022

Target	Mechanism	Indication	Product Candidate	Stage of Development				
Target		Indication		Discovery	IND-enabling	Phase 1		
Target X	EMT, FMT, fibroblast proliferation, macrophage activation	Idiopathic Pulmonary Fibrosis (IPF)	ISM001-055 ⁽¹⁾					
		Kidney Fibrosis (KF)	ISM001-055					
		Skin Fibrosis	ISM001-055					
PHD2	EPO induction and iron utilization, epithelial integrity	Anemia of Chronic Kidney Disease	ISM012-077					
		Inflammatory Bowel Disease (IBD)	ISM012-042					
QPCTL	Immune modulation	Immuno-Oncology	ISM004-1057D		Co-develop	ment with Fosun Pharma		
3CL Mpro	Virus replication	COVID-19	Undisclosed					
USP1	Synthetic lethality	BRCA-mutant cancer	Undisclosed					
MAT2A	Synthetic lethality	MTAP ^{-/-} cancer	Undisclosed					
CDK8	Immune modulation	AML, Solid tumors	Undisclosed		8	PCCs since		
PARP7	Immune modulation	Solid tumors	Undisclosed			2021		
CDK12	Tumor cell proliferation	Solid tumors	Undisclosed					
ENPP1	Immune modulation	Solid tumors	Undisclosed					
Fibrosis Oncology Immunology Others								

1. ISM001-055, is currently being evaluated in a Phase 1, SAD / MAD study in New Zealand.

Note: Full pipeline consists of ~30 programs for 20+ drug targets; only selected programs have been listed above

8 Preclinical Candidates Nominated Since February 2021

2020 - Can we link biology and chemistry to improve patient outcomes?

Can Al come up with a **<u>Novel Target</u>** and **<u>Novel Molecule</u>**

for a broad disease with no cure that may also target the fundamental mechamisms of aging?

Idiopathic Pulmonary Fibrosis Disease Background

Idiopathic Pulmonary Fibrosis

Alveoli in pulmonary fibrosis

Irregular, abnormal air spaces Large areas of scarring (fibrosis)

©2016 MAYO IPF is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, limited to the lungs, and associated with the histopathologic and/or radiologic pattern of usual interstitial pneumonia (UIP).

Symptoms

Pathogenesis

Prognosis

Complications

- · Shortness of breath
- A severe dry cough.
- Others: Clubbing, fatigue, gradual unintended weight loss, generally feeling unwell, rapid shallow breathing.

The factors that induce the fibrotic process are unclear. Possible risk factors include smoke, history of pulmonary fibrosis, genes, certain viral infections, air pollution and some exposures in the workplace.

IPF is a progressive disease, fibrosis builds up over time causing a gradual breathlessness and the need for increasing amounts of oxygen. Eventually, lung failure (medically called "respiratory failure") can develop, which is a life-threatening condition.

Depression and anxiety, lung cancer, pulmonary hypertension, gastroesophageal reflux disease, obesity, emphysema, and obstructive sleep apnea

IPF Disease Background

ISM001: The Discovery of Novel Antifibrotic / Geroprotector

Fibrosis Target ID, Compound Generation and Validation in <18 months

Target X is one of the targets identified by Insilico Medicine AI platform implicated in multiple fibrotic diseases

Potent target inhibition of ISM018_055

Novel small molecules generated using Chemistry42TM showed promising activity.

ISM001 series molecules showed potent inhibition of the target's activity with nM IC50 values.

Lung function restored at low doses

Histology data verified by independent, blinded analysis

Fibroblast-to-myofibroblast transition (FMT) and Epithelialmesenchymal transition (EMT) in IPF human donors

Myofibroblasts are thought to play a major role in fibrosis through excessive deposition of extra-cellular matrix during wound healing processes.

FMT & EMT are hallmark events in the pathobiology of IPF.

INSO18_055 potently antagonized FMT and EMT in primary human lung epithelial cells and fibroblasts, respectively, derived from patients with idiopathic lung fibrosis.

INSO18_055 is 5-fold more potent than Nintedanib on FMT, and 16-fold more potent than Nintedanib on EMT.

Preclinical Candidate (PCC) preclinical experiments completed

Insilico Medicine AI platforms discovered a Novel target and designed a Novel preclinical candidate molecule

Development

Traditional Approach

Discovery

ISM001-055: Compelling Preclinical Package to Support CTA/IND Filing

In vitro cell-based assay IC₅₀ evaluation of fibrosis markers

ISM001-055

Collagen I & α SMA IC₅₀ <100 nM vs

IC₅₀ > 600 nM of Nintedanib

ISM001-055 observed to be 6-times more potent than Nintedanib

BioMAP study in fibrosis panel demonstrated that ISM001-055:

- ✓ Was active and non-cytotoxic
- ✓ Mediated changes in key IPF biomarker parameters
- ✓ Showed a more pronounced effect compared to Nintedanib

ISM001-055 observed to cause significant changes of key biomarkers related to IPF

In vivo efficacy study for combinations with Nintedanib & Pirfenidone

Combination of suboptimal doses of ISM001-055 & Pirfenidone exhibited:

- \checkmark Synergistic effect in the lung function restoration
- ✓ Synergistic anti-fibrotic effect
- ✓ Synergistic reductions in αSMA & Collagen I expression

Synergistic effect of ISM001-055 with Pirfenidone observed

Toxicology studies in mice & dogs

After 14-day oral repeat dose study: ✓ In mice: NOAEL considered to be 60 mg/kg/day

✓ In dogs: NOAEL considered to be 20 mg/kg/day

In the ongoing 28-day toxicology study:

- \checkmark In mice: Top dose group showed dose-limiting toxicity; low and mid dose animals demonstrated only minor clinical findings
- ✓ In dogs: GI symptoms with increasing severity and reduced food intake observed mainly in high dose animals while not in low and mid dose

groups ISM001-055 observed to be well tolerated at low and mid doses

Example: AI-Discovered Novel Target and AI-Designed Novel Anti-Fibrotic Small Molecule with Multi-Purpose Target in Phase I in 30-months

ISM001-073: Preclinical Data Supports Selection as a PCC for Kidney Fibrosis

Good efficacy in UUO in vivo model of kidney Highly active inhibitor of Target X fibrosis: with IC_{50} values in nM range Significant & dose dependent decrease in hydroxyproline & fibrosis score • Significant decrease in Collagen type 1, 3 & 4 High efficacy in cell-based assay inhibiting α -SMA production in human kidney 2 cells Well-tolerated in 2-week toxicity with the nM IC₅₀ values and μ M CC₅₀ values study in mice Exposure at NOAEL Safety factor = Exposure at Pharmacological active dose In the BioMAP renal fibrosis system, • Safety factor of ISM001-073 ≈ 12 inhibited inflammation, myofibroblast activation, fibrosis-related tissue remodeling and wound healing activity **Balanced ADMET properties suitable** markers for further development in clinical trials

From Start to Phase 1 in 30 Months: Insilico's AI-Discovered & AI-Designed Potentially Geroprotective Anti-Fibrotic Drug

Autonomous Al-Driven Robotics Laboratory Scaling Target Discovery With Robotics

IND-enabling studies

Clinical Trials

Phase I

insilico.com

Leverage OMICS and Meta Data for Novel Target Discovery

~\$2 Trillion Dollars

AI-Driven and Self-driving Target Discovery and Validation Lab

End-to-End Integrated Solutions

Insilico Medicine

InsilicoMedicine InSilicoMeds @Biogerontology alex@insilico.com

Opening soon in: Abu Dhabi Montreal **New York:** Insilico Medicine, The Cure by Deerfield, 345 Park Avenue, New York

HK: 307A, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Pak Shek Kok

Taipei: 20th Floor, No.333, Sec. 1, Keelung Rd., Xinyi District, Taipei

Shanghai: Tower E, 9th Floor, 2889 Jinke Road, Pudong New Area, Shanghai

insilico.com

We are hiring!

A short personal announcement...

A QUEST FOR AGING WITHOUT LOSING AND CONTINUOUS IMPROVEMENT

www.LongevityPledge.org

Research Paper

Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine

Frank W. Pun^{1,*}, Geoffrey Ho Duen Leung^{1,*}, Hoi Wing Leung^{1,*}, Bonnie Hei Man Liu¹, Xi Long¹, Ivan V. Ozerov¹, Ju Wang¹, Feng Ren¹, Alexander Aliper¹, Evgeny Izumchenko², Alexey Moskalev³, João Pedro de Magalhães⁴, Alex Zhavoronkov^{1,5}

¹Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China ²Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA ³School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA ⁴Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK

⁵Buck Institute for Research on Aging, Novato, CA 94945, USA

*Equal contribution

Correspondence to: Alex Zhavoronkov; email: alex@insilico.comKeywords: artificial intelligence, deep learning, drug discovery, multi-omics, target identificationReceived: January 21, 2022Accepted: March 6, 2022

Workflow of the present study

KOL

Financial Scores

Funding per Publication

Grant Funding
Grant Size

Development Level

Tissue Specificity

Tchem

Tclin D Tbio Tchem D Tdark

List of diseases and datasets employed

Non-age-associated diseases (NAADs) (n = 19)			Age-associated diseases (AADs) ^{1,2} (n = 14)		
Disease	Disease Class	Number of datasets		Disease	Disease Disease Class
Acromegaly	Metabolic	2		Alzheimer's disease	Alzheimer's disease Neurological
Acthmo	Information & Immunology	12		Amyotrophic lateral sclerosis	Amyotrophic lateral sclerosis Neurological
Astrima Inflammation & Immu		13		Chronic kidney disease	Chronic kidney disease Metabolic
Bipolar disorder	Neurological	4		Chronic obstructive pulmonary disease	Chronic obstructive pulmonary disease Inflammation & Immunology
Celiac disease	Inflammation & Immunology	3		Cirrhosis of liver	Cirrhosis of liver Fibrotic
Crohn's disease	Inflammation & Immunology	8		Idiopathic Pulmonary Fibrosis	Idiopathic Pulmonary Fibrosis Fibrotic
Cystic fibrosis	Fibrotic	5	(Obesity	Obesity Metabolic
	Matchalla	0	(Osteoarthritis	Osteoarthritis Inflammation & Immunology
Hepatitis, alcoholic	Metabolic	3	C	Steoporosis	Osteoporosis Metabolic
Hepatitis C virus infection	Infectious	2	Pa	arkinson's disease	arkinson's disease Neurological
Huntington's disease	Neurological	5	Pri	mary myelofibrosis	mary myelofibrosis Fibrotic
nfectious meningitis	Infectious	3	Pulmor	ary arterial hypertension	ary arterial hypertension Metabolic
Influenza	Infectious	5	Rheumatoid Art	hritis	hritis Inflammation & Immunology
Multiple esterreis	Filmetia	5	Type II diabetes mellit	us	us Metabolic
Multiple sclerosis	Fibrotic	11			Total
Psoriasis	Inflammation & Immunology	11			
Pulmonary tuberculosis	Infectious	7			
Schizophrenia	Neurological	4			strong risk factor for th
Systemic lupus erythematosus	Inflammation & Immunology	9			² The rationale behind cardiovascular diseas
Systemic scleroderma	Inflammation & Immunology	6			commor the insu organs
Type I diabetes mellitus	Metabolic	12			Some m in cance
Ulcerative colitis	Inflammation & Immunology	13			disease

126

Target Identification

Flowchart of the selection of dual-purpose targets from the 14 AADs

Targets associated with hallmarks of aging

Targets (n = 145) were mapped to the corresponding hallmark(s) of aging based on the literature. For novel targets, their participating pathways were also used for the assessment of their association with the hallmark(s) of aging.

Genes in inner circle: connected to all hallmarks Genes in **Blue**: Age-associated disease targets Genes in **Black**: Common targets Genes <u>underlined</u>: Cancer drivers

Al-derived targets crosstalk to aging-associated signaling pathways

List of prioritized targets

Novelty	Target ¹	Protein family	Dysregulation in AAD classes	Therapy approach	Hallmarks of aging	Role in aging	Clinical trial status	Severe toxicity ³	Reference (PMID)
High confidence	CXCL12	Cytokine	ALL Upregulated	Antagonist (pro- aging)	Inflammation, Stem cell exhaustion	CXCL12 is an aging-upregulated gene and a mediator of the crosstalk between vascular cells and many brain cell types	Completed phase 4	No evidence	23128103, 20833981
High confidence	SPP1	Chemokine	ALL Upregulated	Antagonist (pro- aging)	Extracellular matrix stiffness, Inflammation, Stem cell exhaustion	Age-dependent increase in SPP1 levels inhibited skeletal muscle regeneration	Completed phase 1/2	No evidence	28254837, 17392476
Medium novel	ITGB5	Receptor	ALL Upregulated	Antagonist (pro- aging)	Altered intercellular communications, Extracellular matrix stiffness	ITGB5 is a TGF-β activator. Inhibiting TGF-β signaling was shown to repress body size as well as lifespan <i>in vivo</i>	Completed phase 3	No evidence	29070608
Medium novel	PPM1A	Esterase	ALL Downregulated	Agonist (anti-aging ²)	Deregulated nutrient signaling, Inflammation	PPM1A stimulated macrophages to produce TNF through TLR4	N/A	No evidence; absence in DEG	31791585
Highly novel	RAB7B	Hydrolase	ALL Upregulated	Agonist (anti-aging)	Impaired proteostasis, Inflammation, Mitochondrial dysfunction	RAB7B negatively regulated TLR4 signaling in macrophages and autophagic flux as well as prevented inflammation and autophagy upon damage	N/A	No evidence; absence in DEG	28726776
Highly novel	ADAMTS14	Peptidase	Upregulated in neurological and fibrotic diseases	Antagonist (pro- aging)	Extracellular matrix stiffness	ADAMTS14 is responsible for the degradation of ECM collagen. Aged fibroblast-ECM interactions become disrupted due to the fragmentation of collagen fibrils. Fibroblasts synthesized fewer ECM proteins and more matrix-degrading metalloproteinases	N/A	No evidence, absence in DEG	11779638
Highly novel	KDM7A	Oxidoreductase	Downregulated in neurological and fibrotic diseases	Agonist (anti-aging)	Altered intercellular communications, Genome instability	Age-related neural dedifferentiation might contribute to many cognitive abilities decline with age. KDM7A regulated neural differentiation through FGF4, and was associated with Wnt signaling	N/A	No evidence	34395453, 30614617
Highly novel	MYSM1	Peptidase	Downregulated in neurological, fibrotic and metabolic diseases	Agonist (anti-aging)	Cellular senescence, Inflammation, Stem cell exhaustion	MYSM1 functionally reduced cellular senescence and the aging process. MYSM1 deficiency promoted the aging process and decreased lifespan while its overexpression inhibited the aging process and increased lifespan <i>in vivo</i> .	N/A	No evidence	33240758
Highly novel	MTMR4	Esterase	Downregulated in neurological, fibrotic and metabolic diseases	Agonist (anti-aging)	Altered intercellular communications	Skeletal muscle atrophy accompanies many chronic disease states and normal aging	N/A	No evidence	31543504

Note:

¹ Targets selected for comprehensive target review are in **BOLD**

² Based on its mechanism of action i.e. protective role

 3 Database of Essential Gene (DEG) is freely accessible from the website $\underline{http://tubic.tju.edu.cn/deg}$