USE CASE Healthcare-Specific Large Language Models in Action

LUCA MARTIAL

Senior Data Scientist John Snow Labs

Healthcare-Specific Large Language Models in Action

LUCA MARTIAL

Senior Data Scientist John Snow Labs

John Snow LABS

JohnSnowLabs / spark-nlp Public

State of the Art Natural Language Processing

♂ nlp.johnsnowlabs.com

▲ Apache-2.0 license

☆ 3k stars 양 608 forks

Entity Recognition	Text Classification	Spelling & Grammar abc She become the first She became the first	Information Extraction They met Last week Date -> 29-04-2020
Question Answering च → ?	Speech to Text	Image Classification	Reading Comprehension [?≡ [≡ !]
Translation	Summarization	Paraphrasing You bet! > For sure.	Emotion Detection
Split Text • Sentence Detector • Tokenizer • Normalizer • Mord Segmentation • Word Segmentation • Understand Crammar • Stemmer • Lemmatizer	Clean Text Spell Checker Grammar Checker Viriting Style Checker Stopword Cleaner Summarization Find in Text Find in Text Fact Matcher Renex Matcher	20,000+ Pre-trained Pipelines, Models & Transformers BERT ELMO TAPAS ALBERT DeBERTa USE Longformer ELECTRA T5 NMT VīT DistilBERT RoBERTa	250+ Languages
 Part of Speech Tagger Dependency Parser Translation 	Date Matcher Chunker Question Answering	XLM-RoBERTa Wav2Vec2 XLNet	
Trainable & Tunable	Scalable Fast In Sparter All Lig	htPipeline (Intel) (Intel)	mized Community Ć NLP S법MMIT

		Entity Recognition 40 units DOSAGE of insulin glargine DRUG at night FREQUENCY	Entity Linking Suspect diabetes SNOMED-CT: 47312700 Lisinopril 10 MG RxNorm: 316151 Hyponatremia ICD-10: E87.1	Asse Fever and se No stomach Father with	rtion Status ore throat → PRESENT pain → ABSENT Alzheimer → FAMILY	Relation Extraction AFTER Admitted for nausea due to chemo Occurrence Symptom Treatment CAUSED BY	
GE Healthcare	Mount Sinai	De-Identification Katia was born on April 29th PATIENT was born on DATE Olga was born on March 28th	Question Answering Do preoperative stains reduce arterial fibrillation after CABC?	Sum III III III III	To a state of the state of	Data Enrichment Amoxicillin → RxNorm: 722 → drug class: antibiotic → brand: Amoxil, Larotid	
	PERMANENTE.	Algo	rithms		Con	tent	
	b NOVARTIS	Information Extraction Document Classification Entity Disambiguation Contextual Parsing Patient Risk Scoring 	Data Obfuscation Name Consistency Gender Consistency Age Group Consistency Format Consistency 	BioCPT JSL-sBER GloVe-Mr	Medical Jage Models BioBERT JSL-BERT T ClinicalBERT ed TS Flan-T5	Medical Terminologies SNOMED-CT CPT UMLS ICD-10-CM RxNorm HPO ICD-10-PCS ICD-0 LOINC	
Cincinnati Children's	Providence	Clinical Grammar • Deep Sentence Detector • Medical Spell Checking • Medical Part of Speech • Terminology Mapping	Zero-Shot Learning Entities by Prompt Relations by Prompt Classification by Prompt Relative Data Extraction 	l, Signs, Symp Procedures Sections, Ad Anatomy, So Demographi	000+ Pretro linical Text toms, Treatments, Findings, Drugs, Tests, Labs, Vitals, verse Effects, Risk Factors, cali Determinants, Vaccines, cs, Sensitive Data	Biomedical Text Biomedical Text Clinical Trial Design, Protocols, Objectives, Results, Research Summary & Outcomes; Organs, Cell Lines, Organisms, Tissuea, Genes, Variants, Expressions, Chemicals, Phenotypes, Proteins, Pathogens	
		Trainable & Tunable	Scalable Fast I	nference	Hardware Optim	nized Community	
			Spark ML	ghtPipeline		SÜMMIT	

- GPT4all
- OpenChatKit
- Alpaca
- Lit-LLaMA
- Dolly
- Vicuna
- medAlpaca
- ColossalChat
- Cerebras-GPT
- Koala
- Baize

Real-World Impact: A great productivity tool!

Apoorva Govind 🤣 @Appyg99

Can confirm. Just yesterday, my teammate wrote a custom JSON parser that would have been a slog for 1-2 days within hours using GPT4. GPT4 is like giving each engineer their own intern who does 70-80% of the job. The remaining 30% is constraints & biz logic. Startups are going to be insanely efficient w/ hiring & execution!

TECH DRIVERS

...

OpenAl-powered app from Microsoft will instantly transcribe patient notes during doctor visits

PUBLISHED MON, MAR 20 2023+8:00 AM EDT | UPDATED MON, MAR 20 2023+11:17 AM EDT

KEY POINTS Microsoft and its Nuance Communications subsidiary announced Dragon Ambient eXperience (DAX) Express, a clinical notes application for healthcare workers that is powered by artificial intelligence.

> DAX Express aims to help reduce clinicians' administrative burdens by automatically generating a draft of clinical notes after a patient visit.

WATCH LIVE

 The technology is powered by a combination of ambient A.I., which forms insights from unstructured data like conversations, and OpenAI's newest model, GPT-4.

THE WALL STREET JOURNAL.

Home World U.S. Politics Economy Business Tech Markets Opinion Books & Arts Real Estate

AI Has Its 'iPhone Moment'

The launch of ChatGPT has set off a frenzy by companies to show they are in the AI game

Capabilities of GPT-4 on Medical Challenge Problems

Dataset	Component	GPT-4 (5 shot)	GPT-4 (zero shot)	GPT-3.5 (5 shot)	GPT-3.5 (zero shot)	$\begin{array}{c} \text{Flan-PaLM 540B}^{*} \\ \text{(few shot)} \end{array}$
	Mainland China	75.31	71.07	44.89	40.31	_
MadOA	Taiwan	84.57	82.17	53.72	50.60	_
MedQA	United States (5-option)	78.63	74.71	47.05	44.62	_
	United States (4-option)	81.38	78.87	53.57	50.82	60.3^{**}
PubMedQA	Reasoning Required	74.40	75.20	60.20	71.60	79.0
MedMCQA	Dev	72.36	69.52	51.02	50.08	56.5
	Clinical Knowledge	86.42	86.04	68.68	69.81	77.00
MMLU	Medical Genetics	92.00	91.00	68.00	70.00	70.00
	Anatomy	80.00	80.00	60.74	56.30	65.20
	Professional Medicine	93.75	93.01	69.85	70.22	83.80
	College Biology	93.75	95.14	72.92	72.22	87.50
	College Medicine	76.30	76.88	63.58	61.27	69.90

Google's MedPaLM-2 on USMLE (Medical License Exam)

Choose the Task :

Summarizer

Summarizer

Question Answering

Text Generation

summanzer_connear_jar

Try it yourself:

Explore Medical Large Language Models

Clinical Text Summarization

This model is specifically trained on clinical data for text summarization.

Select an example

Medical Specialty: Allergy / Immunology, Sample Name: Allerg...

Text

Medical Specialty: Allergy / Immunology, Sample Name: Allergic Rhinitis Description: A 23-year-old white female presents with complaint of allergies. (Medical Transcription Sample Report)

demo.johnsnowlabs.com/healthcare/

Name Entity Recognition

Please identify Person, Organization, Location and Miscellaneous Entity from the given text.

Text: All four teams are level with one point each from one game. **Entity:**

NER

Model	Zero-	Shot	Fine-Tuned			
	ChatGPT	GPT-3.5	Flair	LUKE	ACE	
All	53.7	53.5	93.0	93.9	94.6	
Loc	72.2	67.1	94.0	-	-	
Per	81.4	78.0	97.4	-	-	
Org	45.1	50.0	91.9	-	-	
Misc	4.5	4.8	83.0	-	-	

Scope of Experiments

In-Depth Comparison of Spark NLP for Healthcare and ChatGPT on Clinical Named Entity Recognition

 Veysel Kocaman · Follow

 Published in John Snow Labs · 5 min read · Apr 18

 55
 Q

Spark NLP for Healthcare NER models outperform ChatGPT by 10–45% on key medical concepts, resulting in half the errors compared to ChatGPT.

Comparing Spark NLP for Healthcare and ChatGPT in Extracting ICD10-CM Codes from Clinical Notes

8 0	Veysel Kocaman · Follow Published in John Snow Labs · 6 min read · Apr 16				
	Q 1	G‡	(\bullet)	([↑])	

In assigning ICD10-CM codes, Spark NLP for Healthcare achieved a 76% success rate, while GPT-3.5 and GPT-4 had overall accuracies of 26% and 36% respectively. A Comprehensive Comparison of ChatGPT and Spark NLP for Healthcare in De-Identification of Sensitive Data (PHI)

Spark NLP for Healthcare De-Identification module demonstrates superior performance with a 93% accuracy rate compared to ChatGPT's 60% accuracy on detecting PHI entities in clinical notes.

<pre>spark-nlp-workshop / tutorials / academic / LLMs_in_</pre>	Healthcare / benchmarks / []	Add file 👻 ···
🕈 aydinmyilmaz add missing deid prompt		b38305b · last month 🕚 History
Name	Last commit message	Last commit date
• ••		
Config	add benchmarks	last month
🖿 data	add deid sentences	last month
workbench	add missing deid prompt	last month
T README.md	add benchmarks	last month
C requirements.txt	add benchmarks	last month

Extracting Medical Problems

Prompt

You are a highly experienced, skilled and helpfull medical annotator who have been working on medical texts to label medical entities.

I will provide you some entity types with sample chunks and I want you to find similar entities from given texts.

- Entity Type: Problem
- 1. Example chunks for Problem Type: feels weak, shortness of breath, backache 2. Example chunks for Problem Type: gastroparesis, gastritis, allergies, pneumonitis 3. Example chunks for Problem Type: spine fractures, ligature strangulation, abrasions 4. Example chunks for Problem Type: depression, bipolar disorder, psychosis 5. Example chunks for Problem Type: colon cancer, mesothelioma, brachial plexus tumor 6. Example chunks for Problem Type: depression, anxiety, bipolar disorder, psychosis 7. Example chunks for Problem Type: coronary artery disease, CAD, cardiomyopathy 8. Example chunks for Problem Type: renal disease, nephrolithiasis, hydronephrosis 9. Example chunks for Problem Type: overweight 10. Example chunks for Problem Type: DM Type II, diabetic 11. Example chunks for Problem Type: obese 12. Example chunks for Problem Type: wandering atrial pacemaker, multifocal atrial tachycardia, frequent APCs, bradvcardia 13. Example chunks for Problem Type: tuberculosis, sexually transmitted diseases, HIV 14. Example chunks for Problem Type: increased attenuation, T1 hypointensity, opacity in apex right lung 15. Example chunks for Problem Type: stroke, TIA 16. Example chunks for Problem Type: increased cholesterol, hypercholesterolemia 17. Example chunks for Problem Type: tachycardic, afebrile 18. Example chunks for Problem Type: high blood pressure, HTN

I want you to extract Problem type of entities from the given text and label them as Problem

Task :

Find entities in the given sentence.

Answer value must be as given (valid JSON) for the given sentence as example: {{"given_sentence": "Patient feels weak.", "list_of_entities": [{{"entity_type": "Problem", "chunk": "feels weak"}}]}}

Now I want you to find the Problem entities in the given sentence:

100 sentence, ~800 entities

GPT 3.5

The patient denies chest pain , irregular heartbeats , sudden changes in heartbeat or palpitation , shortness of breath , difficulty breathing at night , swollen legs or feet , heart murmurs , high blood pressure , cramps in his legs with walking , pain in his feet or toes at night or varicose veins .

16%

Spark NLP (ner_jsl_reduced)

The patient denies chest pain , irregular heartbeats , sudden changes in heartbeat or palpitation , shortness of breath , difficulty breathing at night , swollen legs or feet , heart murmurs , high blood pressure , cramps in his legs with walking , pain in his feet or toes at night or varicose veins .

* lenient metrics (partially overlapping chunks counted as hit)

https://github.com/JohnSnowLabs/spark-nlp-workshop/tree/master/tutorials/academic/LLMs_in_Healthcare

Detecting Adverse Drug Events

De-Identifying PHI Data

A Comprehensive Comparison of ChatGPT and Spark NLP for Healthcare in De-Identification of Sensitive Data (Medium)

Extracting ICD10-CM Codes

Comparing Spark NLP for Healthcare and ChatGPT in Extracting ICD10-CM Codes from Clinical Notes (Medium)

LLMs: The Good, The Bad

- Tasks making HCP lives easier (note summarizing, patient profiling, etc)
- ✓ Indexing, querying databases
- ✓ Agent-based integrations

- igstarrow Unreliable data abstractors
- igstarrow On-prem deployment is not possible
- ➤ Hallucinating and fabricating incorrect results w/ high confidence
- ➤ Domain & task-specific fine tuning will be required (expertise, time, money)

Solutions Moving Forward

Granular data abstraction by high-precision models; repetitive & laborious tasks by LLMs

LLMs guard-railed by explainable DL/ML models, knowledge graphs, rule-based systems

LLMs as smart assistants (convert natural language to structured queries (SQL, Cypher))

INTELLIGENT HEALTH UK \ 2023

Breaking down the barriers between tech and healthcare

