KEYNOTE Reimagining & Accelerating Health Equity, Access & Diversity

DR MARC FARR Chief Analytical Officer East Kent Hospitals University NHS Foundation Trust

Re-imagining Health Equity

Prof. Marc Farr Chief Analytical Officer,

East Kent Hospitals NHSFT Kent and Medway ICB

Re-imagining Health Equity

The background to analysis of inequalities

Analysis techniques that are now available

Imagining the future – the opportunity and the challenge

Marc

Chief Analytical Officer

Ask me:

Are we providing fair and equitable care at our hospital?

What are the regional plans for Population Health Management to address inequalities?

How are we collaborating with the local universities on recruitment and research?

It was 20 years ago today...

Did you know?

...for every tube stop east of Westminster, life expectancy drops by a year...

000000

Did you know?

...there are as many unplanned pregnancies among the over 40s as there are for the

under 20s…

Did you know?

...women diagnosed with breast cancer in their 40s from an affluent background are more likely to have a lumpectomy than a mastectomy ...

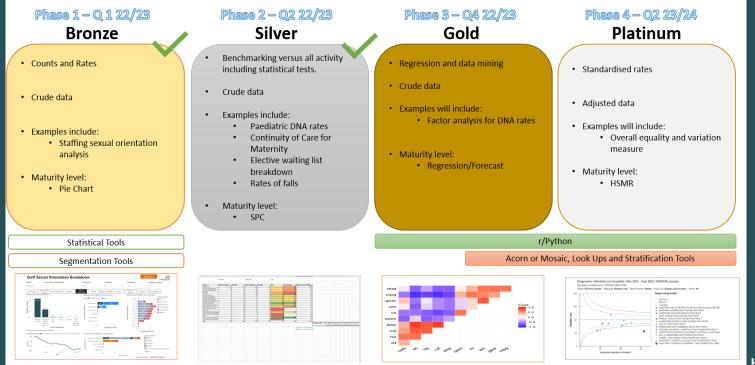
Did you know?

men diagnosed with bowel cancer in their 50s from a poor background are more likely to have a colostomy bag than a bowel reconstruction...

- There are now opportunities to use data and analysis to provide assurance around equitable access, patient experience and outcomes for services delivered at acute hospitals and the importance of putting in place a governance framework for monitoring and tackling any health inequalities that might exist.
- Key points:
 - For the first time, there is national guidance that NHS organisations must be able to disaggregate their board reports by ethnicity and deprivation, in response to national concerns around differences in risk and vaccination uptake for Covid, and waiting times in the elective backlog. Guidance also requires executive leadership in this area.
 - Initial exploratory analysis conducted internally at EKHUFT, including maternity outcomes and likelihood of breaching 18 weeks on elective waiting lists, suggests some inequalities exist between different demographic groups.
 - An informal working group has been established between the Information team and two of our clinicians, seeking to ensure clinical input in understanding causes of health inequalities.
 - A more formal approach to governance is recommended. Information team plan to consider patient access, patient experience and patient outcomes - given that access is currently a key topic, we recommend that inequalities assurance is the responsibility of the COO.

Today...

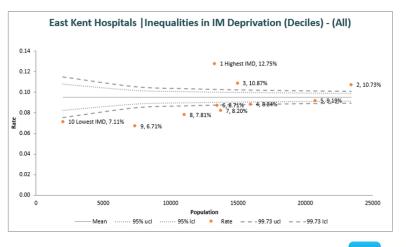
EKHUFT: Approach to Inequalities analysis



Paediatric DNA rates

The higher the level of deprivation the more likely families with children are to DNA.

Row Labels - X Su	m of Num Su	m of Denom	Index	Expected	Rate
1 Highest IME	1,692	13,273	134	1263.7	12.7%
2	2,512	23,401	113	2228.0	10.7%
3	1,626	14,962	114	1424.5	10.9%
4	1,408	15,936	93	1517.2	8.8%
5	1,904	20,728	96	1973.5	9.2%
6	1,171	13,446	91	1280.2	8.7%
7	1,124	13,710	86	1305.3	8.2%
8	860	11,018	82	1049.0	7.8%
9	494	7,366	70	701.3	6.7%
10 Lowest IMI	143	2,010	75	191.4	7.1%



Model Training and Evaluation

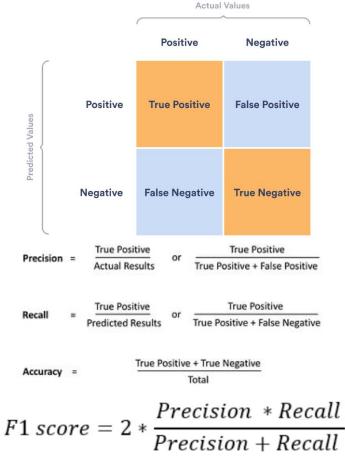
• Type of problem is Classification

Model	Example Use Cases	Concept in Detail That Produces the Output
Logistic Regression	Predicting the likelihood of an event (e.g., churn prediction, spam detection).	It uses the logistic function to model a binary dependent variable. The model learns weights for the features that maximize the likelihood of reproducing the observed outcomes.
Decision Tree	Decisions that require a clear interpretation and understanding of the model (e.g., medical diagnosis).	It uses a tree-like model of decisions based on the features. Each node in the tree splits the data based on a feature value, and the final decision is based on the leaf nodes.
Random Forest	General classification and regression tasks that require robustness to noise and outliers (e.g., predicting customer satisfaction).	It uses an ensemble of decision trees, each trained on a different subset of the data. The final output is the mode (for classification) or mean (for regression) of the outputs of all trees.
Gradient Boosting	When high predictive accuracy is desired (e.g., predicting house prices).	It uses an ensemble of weak prediction models, typically decision trees. The model is built in a stage-wise fashion, and each new model helps to correct the errors made by the existing ensemble.
Bagging Classifier	Similar to Random Forest but for use with any base estimator (e.g., anomaly detection, classification tasks).	It creates an ensemble of base estimators, each trained on a different randomly sampled subset of the data. The final output is decided by majority voting (for classification) or averaging (for regression).
AdaBoost Classifier	Used in conjunction with many types of learning algorithms to improve performance (e.g., face detection).	It adjusts the weights of the training instances: instances that were misclassified by the previous model are given more weight. Each model in the ensemble focuses more

Model Training and Evaluation

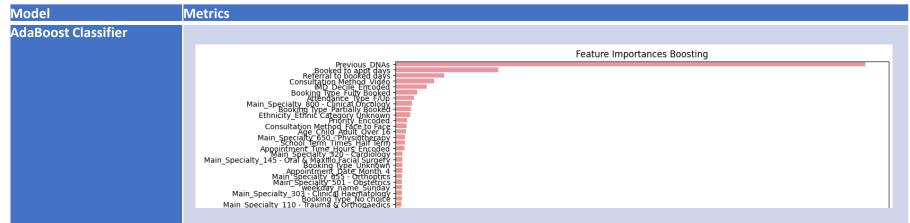
• How do we evaluate models?

Metric	Example Use Cases	Why is it Important to Consider this Metric?
Accuracy	General classification problems	Accuracy tells us about the overall performance of the model, giving us a basic idea of how well the model performs across all classes.
Precision Precision measures how many of the predicted positive instances were actually correct.	When false positives are costly (e.g., spam detection)	Precision is crucial when the cost of false positives is high. It tells us about the model's performance with respect to false positives.
Recall Recall measures how well the model identifies the positive instances out of all the actual positive instances.	When false negatives are costly (e.g., cancer diagnosis)	Recall is crucial when the cost of false negatives is high. It tells us about the model's performance with respect to false negatives.
F1 Score The F1-score is the harmonic mean of precision and recall	When an equal emphasis is given to both precision and recall (e.g., information retrieval)	F1 Score is the harmonic mean of precision and recall, and gives a balanced measure of the model's performance when both false positives and false negatives are equally important.
ROC-AUC	When we want to measure the model's ability to distinguish between classes	ROC-AUC gives an aggregate measure of performance across all possible classification thresholds, providing a measure of how well the model can distinguish between classes.



Model Training and Evaluation

Important Features



Best Model selection

Accuracies Dictionary

accuracies = {
 "Logistic Regression": lr_accuracy,
 "Decision Tree": dt_accuracy,
 "Random Forest": rf_accuracy,

- "Gradient Boosting": gb_accuracy,
- "Bagging": bagging_accuracy,
- "AdaBoost": boosting_accuracy

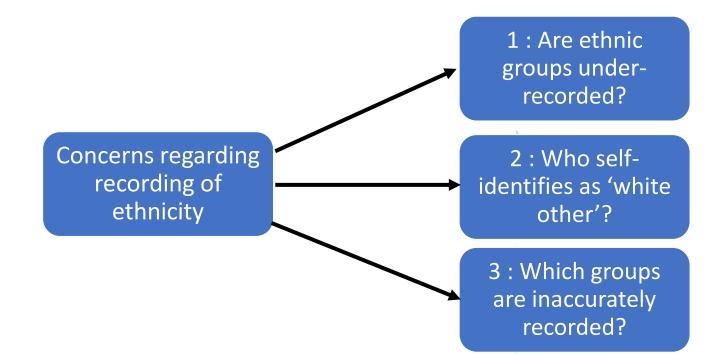
}

Choose the model with the highest accuracy

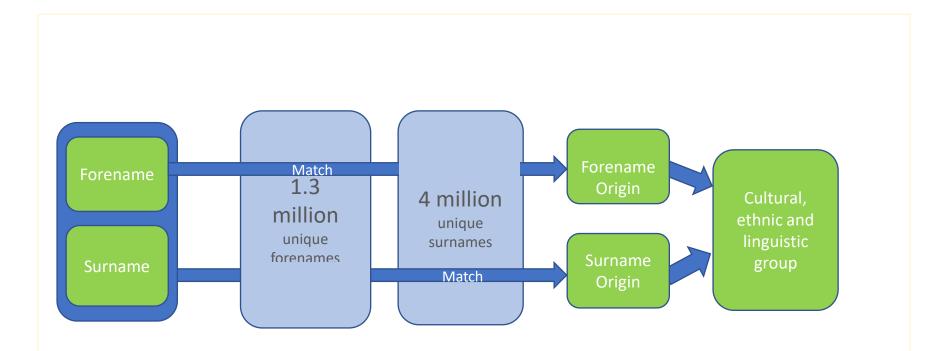
best_model_name = max(accuracies, key=accuracies.get)
best_model = models[best_model_name]
print(best_model)

RandomForestClassifier(random_state=42)

Concerns of East Kent Hospital Trust



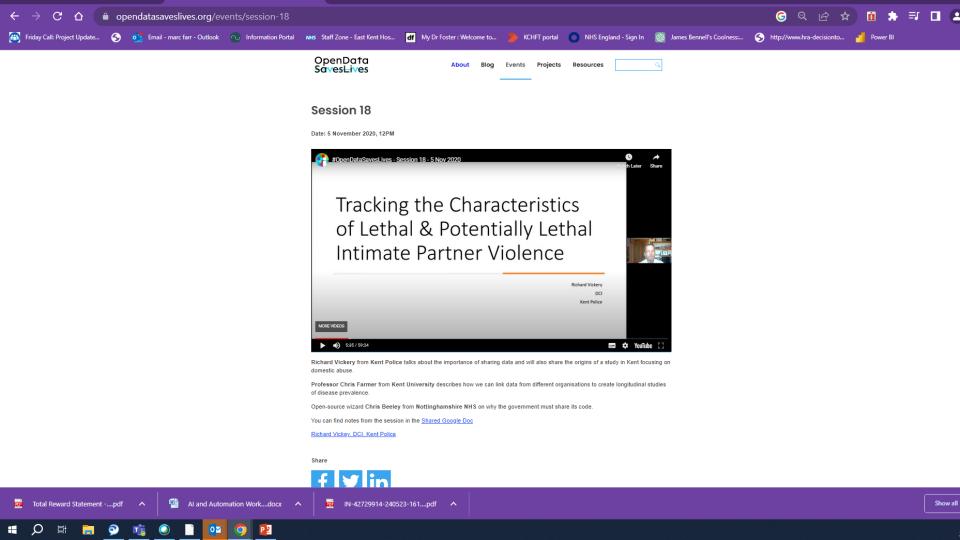
Origins software



Origin of name	% patients ethnicity		
	not known or		
	patients declined		
	to answer		
Britain and Ireland	5.38		
Baltic States	15.35		
Nigeria	16.51		
Romania or Moldova	18.02		
Bangladesh	18.04		

2 : Who self- identifies as 'white other'?

		% describin		
			themselves	
		% describing as any othe		
		themselves	white	
Origins Sub Groups	patients	as British	background	
EIA : POLISH	7,273	30.06	50.05	
EJZ : CZECH OR SLOVAK	3,994	17.88	50.15	
EKA : HUNGARIAN	1,850	34.22	34.92	
ELZ : BALTIC STATES	1,824	16.50	57.95	
EMF : ALBANIAN	966	33.75	41.61	
EMZ : FORMERLY YUGOSLAV	1,404	39.60	33.97	
ENA : BULGARIAN	1,024	17.68	53.42	
EOA : ROMANIAN	4,279	10.56	56.65	
EPZ : RUSSIAN OR UKRAINIAN	4,313	18.76	51.05	



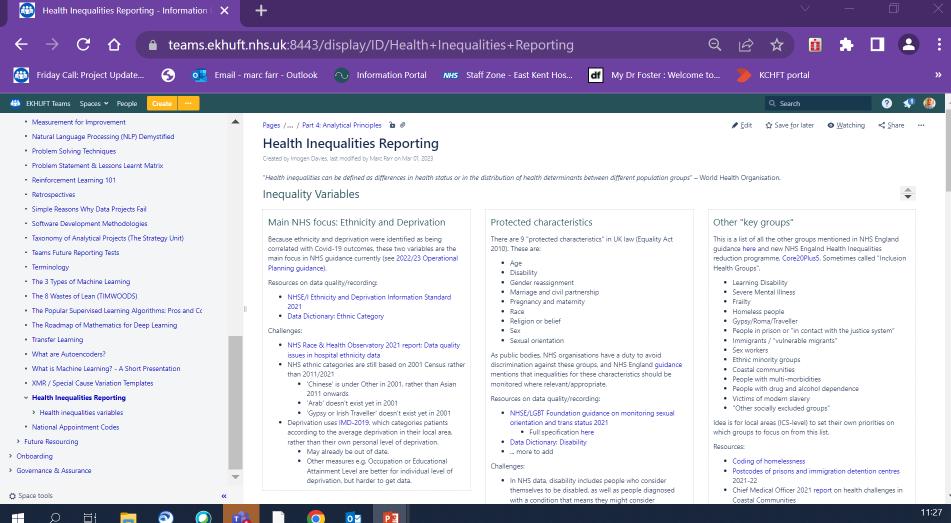
Resourcing our drive to reduce inequalities

Educating staff and creating resources

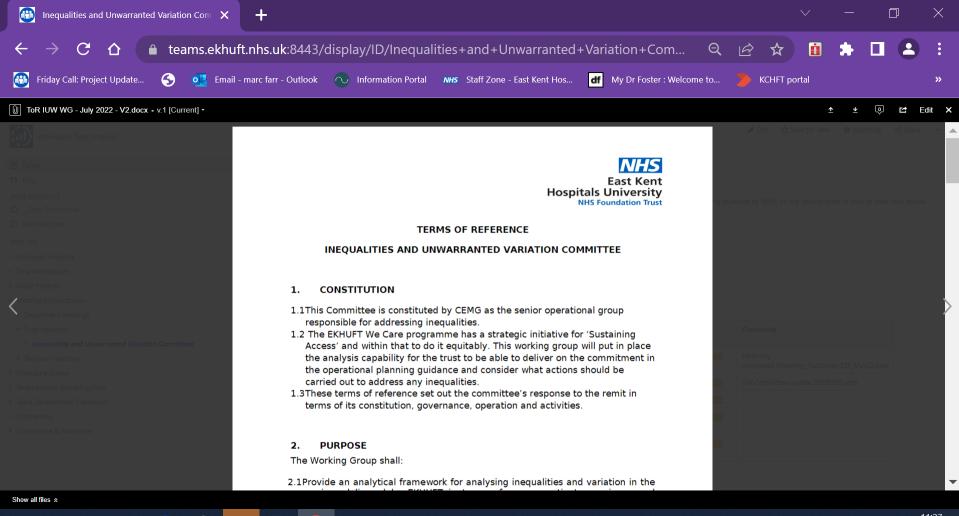
Increased Governance around inequalities monitoring

Use of AI

Professional accreditation



09/05/2023



P

0

_

11:27 09/05/2023

Artificial Intelligence & Robotic Process Automation

Developing the Analysts of tomorrow

Avoiding the data desert

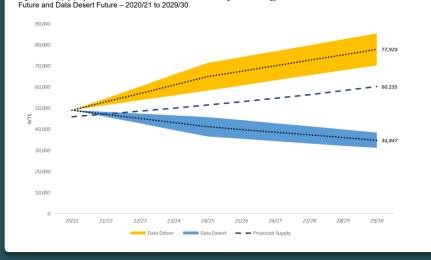


Figure 1: Supply projection and demand forecasts for the NHS digital technology and health informatics workforce in a Data Driven

Source: HEE Data Driven Healthcare in 2030

Re-imagining Health Equity

Prof. Marc Farr Chief Analytical Officer,

East Kent Hospitals NHSFT Kent and Medway ICB

INTELLIGENT HEALTH UK \ 2023

Breaking down the barriers between tech and healthcare

