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Healthcare Al evaluation and monitoring



Al will transform healthcare

Aival enables an Al product to be properly analysed, to give
clinicians the confidence to know that it will work at their local site
and for their patients

Our solution allows rapid, scalable and repeatable
independent assessment of Al products without requiring
technical expertise

Our methodology is based on decades of experience in developing medical imaging
Al algorithms and commercial products, understanding their failure modes and
weaknesses and how to test for them




Our founder

has 15+ years' experience in research, development, and regulation of Al products for healthcare

Kanwal Bhatia, Ph.D.

Head of Data Science at Visulytix, leading a team of 6 data
scientists. Developed IP that sold to big pharma / device

manufacturers
Al Architect at Odin Vision

Technical Advisory Board at Ultromics

Ph.D. in Medical Image Computing (Imperial College London, 2007)
with 1500+ citations
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Clinical adoption of Al is slow

« > 500 Al devices cleared for clinical use
(FDA)

+ $5bn investment into medical imaging Al since 2015

- Lack of standard pathways to adoption
- Al products are hard to understand, operating as 'black boxes'

- No standard pathways for validating products before adoption
(current methods are expensive / biased)

- Weak monitoring of Al performance once in use

« Clinical staff do not have the time or skillset to evaluate technical
performance and safety of Al

* Signify Research, May 2023




Build trust through evaluation

Aival software evaluates Al products rapidly and at scale

- Comparison

- ldentify and compare products that provide greatest clinical
benefit for a given site

- Evaluation
 Rigorous independent assessment
- Substantiate manufacturer performance claims
 Accelerate time to sale and reduce cost of adoption

* Monitoring
- Ensure products continue to perform as expected over time
- Standardise post-market surveillance reporting




Al product assessment on local site data

Performance metrics

How well does it work?

Does it work across all acquisition
devices and pathologies

Fairness & bias

Are all population subgroups treated in
the same way?

Explainability

Did the algorithm make the right
prediction for the right reasons?

Robustness

Will the algorithm perform just as
well with unexpected / variable data?
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ala Aequitas Bias Summary 4 Equality Parity False Positive Rate Parity »
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Explainability (black-box)

Is the Al product making the right decisions for the right reasons? We test products as black-boxes without access 1c
underlying model / architecture

Classification: Meningioma, confidence=0.999 Classification: Meningioma, confidence=0.998




Explainability (black-box)

Is the Al product making the right decisions for the right reasons? We test products as black-boxes without access 1c
underlying model / architecture

Classification: Meningioma, confidence=0.999 Classification: Meningioma, confidence=0.998
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Aival evaluation workflow
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Sample analysis report

e N Report Name COVID Report ~ Dataset COVID Dataset 3 Product COVID Lung Product B »
A summary £+ Summary ala Fairness/Bias Insights
View insights about the potential biases of this product.
RepeitDetalls . ________________________________J
1l1 Performance . 9/15 passed tests
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AIA Fairness
Product: COVID Lung Product B Fairness Threshold: 0.8-1.2 Failing tests here might mean the model is significantly better or worse at making a correct prediction for certain subgroups.
@ Explorer Audit Groups: Age at Imaging, Sex 2 failed tests (Age at Imaging) and 1 passed tests (Sex) for this metric.
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L Failing tests here might mean the model is significantly better or worse at correctly predicting positives for certain subgroups than in others.
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T : . . . Male
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G‘I[?L:j(%l: 800 Passing tests here indicates that the product correctly predicts negatives at a similar rate for all subgroups.
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F1
Failing tests here might mean the model wrongly predicts positives at a higher rate for certain subgroups.
Sensitivity 2 failed tests (Age at Imaging) and 1 passed tests (Sex) for this metric.
() False Negative Rate Parity v

Specificit Passing tests here indicates that the product wrongly predicts negatives at a similar rate for all subgroups.
ificity
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Use cases

Healthcare Providers

Validate manufacturer performance
claims on local data

Ensure fairness across demographics
Compare different Al products

Al Vendors

Gain trust with clinical users

Internal self-assessment of failure
modes

Standardise reporting for regulatory
submissions

P
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Al Platforms

Help your users to assess different
products across your platform



Get in touch

@ kanwal@aival.io
@ +447795975256

https://www.aival.io

aival



