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The Era of Technological
Disruption

Innovation and Safety

“Technology is altering the landscape across
various sectors. and the future is unfolding
before our eyes."

DukeHealth

ChatGPT

10

4

Capabilities

Remembers what user said
earlier in the conversation

Allows user to provide follow-
up corrections

“-ained to decline inappropriate
requests

A

Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Limited knowledge of w
events afte~
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Surgical Revolutions (in the las

— 1860s
 Endoscopic Procedures — 1960s

* Cognitive Computing — 2010s
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Surgical data science

] 90657"“"‘}:‘\
The average hospital produces roughly 50 petabytes of data every o 7 ‘
year. That’s more than twice the amount of data housed in the Library
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of Congress, and it amountsto 13/ tera bytes per day
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https://www.weforum.org/agenda/2019/12/four-ways-data-is-improving-healthcare
https://info.cobaltiron.com/blog/petabyte-how-much-information-could-it-actually-hold
https://info.cobaltiron.com/blog/petabyte-how-much-information-could-it-actually-hold
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https://www.youtube.com/watch?v=77RXPgDr-24

Error Handling and Recovery

Oracle Data Platform — Race Strategy

Data Sources,

Discovery

Trackside
Car Telemetr

3" Party Data

Weather Data

w— Data
Metadata

Connect, Ingest, Transform

Ingestor
Container Engine

For Kubernetes)

Streaming Ingest

(OCI Streaming)
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Batch Processing
Data Floy

Persist, Curate, Create

Real-Time and
Modelled Data

(ADW, Race Strategy

Raw Data Storage I

(OCI Object Storage l :

v v

Governance

Analyze, Learn, Predict

| Analytics and Model

Visualization

(Tyre, Safety Car

Weather, Fuel Burn)

Data Science and
Al Services
(Data Reviey

Data Sandboxes)

Measure,
Act

Additional Chients
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Healthcare, specially in surgery is a sector
where technology's promise has not been
fully realized.

“We have advanced machinery and data analytics,
but the operating room still relies heavily on human
judgment, sometimes leading to inefficiencies”

¥ DukeHealth




Diffusion of Innovation Theory

* Relative Advantage
* Compatibility to Workflow

* Complexity of Use

* Triability of models

&

* Observability of Results

¥ DukeHealth




Three major pillars of development

* Establishing a community of users and
developers

1
- . Esablishin Buildin Euseblishi
* Building the architectural framework to ALY a;ch‘s‘eeccc?f(ral thi‘TecZ({?%
. Oevel r ramwor Ehe respirshori
connect and support the community. B N W

thes=e users archrec:tuzsl cennect and ethical, safe
to connect support to connect support | develpoment of
and dommopers | the community Artificial Intelligence
th - community

* Establishing a legal framework to ensure

\& } !l&
trustworthy, responsible, ethical, and safe il i Wﬂﬁﬁﬁﬁh

development of artificial intelligence.




Preparation, Creation, and Implementation
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e Annotation ¥
e Data Structure and Use ¥ -

e Governance Policies, Regulations, and Oversight
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e Video Data Acquisition Framework ¥

e Creation of a Community ¥
e Management through Data Lifecycle

Scientific Research ¥

Education ¥
Cultural Transformation
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DATA collection
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Consensus Recommendations on an Annotation Framework for OO
Surgical Video o

Surgical Endoscopy (2021) 35:4918-4929
https://doi.org/10.1007/500464-021-08578-9

CONSENSUS STATEMENT

SAGES consensus recommendations on an annotation framework
for surgical video

Ozanan R. Meireles' - Guy Rosman'2 - Maria S. Altieri® - Lawrence Carin® - Gregory Hager® - Amin Madani® -
Nicolas Padoy’® - Carla M. Pugh® - Patricia Sylla'® - Thomas M. Ward' - Daniel A. Hashimoto' " - the SAGES Video
Annotation for Al Working Groups

Received: 25 April 2021 / Accepted: 26 May 2021 / Published online: 6 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Background The growing interest in analysis of surgical video through machine learning has led to increased research
efforts; however, common methods of annotating video data are lacking. There is a need to establish recommendations on
the annotation of surgical video data to enable assessment of algorithms and multi-institutional collaboration.

Methods Four working groups were formed from a pool of participants that included clinicians, engineers, and data scientists.
The working groups were focused on four themes: (1) temporal models, (2) actions and tasks, (3) tissue characteristics and
general anatomy, and (4) software and data structure. A modified Delphi process was utilized to create a consensus survey
based on suggested recommendations from each of the working groups.

Results After three Delphi rounds, consensus was reached on recommendations for annotation within each of these domains.
A hierarchy for annotation of temporal events in surgery was established.

Conclusions While additional work remains to achieve accepted standards for video annotation in surgery, the consensus
recommendations on a general framework for annotation presented here lay the foundation for standardization. This type of
framework is critical to enabling diverse datasets, performance benchmarks, and collaboration.
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Annotation Framework O
Hierarchical Structure with Expandable Granularity Epg:

vents

Anatomic region

Step (procedure- specific "
4 Specific anatomy

Task (generic) ‘.";. S | a General anatomy

Action (generic) Tissue characteristics
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Surgical DATA

SAGES consensus recommendations on surgical video data use,
structure, and exploration (for research in artificial intelligence,
clinical quality improvement, and surgical education)

eeeeeeeeee

Jennifer A. Eckhoff'2©® . Guy Rosman'3- Maria S. Altieri® - Stefanie Speidel® - Danail Stoyanov® - Mehran Anvari’ -
Lena Meier-Hein® - Keno Méarz® - Pierre Jannin® - Carla Pugh'®- Martin Wagner'' - Elan Witkowski' - Paresh Shaw'2
Amin Madani'? - Yutong Ban'- . Thomas Ward" - Filippo Filicori' - Nicolas Padoy'® - Mark Talamini®

Ozanan R. Meireles'

Received: 4 May 2023 / Accepted: 5 July 2023 / Published online: 29 July 2023

© The Author(s) 2023
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Use Cases

Future role and use cases of surgical video data
New Technology & Product m

Development

Surgical Training, Performance =
Assessment & Credentialing

Legal Use [N
Reference (temporal storage only)
Integral Part of the Patient Record |

Scientific Use |

0% 25% 50% 75% 100%

Fig. 7 Results of statement 8—future applications and use cases of
surgical video data, identified by survey participants

DukeHealth

Al

Maintanance &

Updating Bias

Data Exploration

Data Product
Linkage  Future Use Development
Cases Stakeholders

Frame Rate  video Type Recordin
g
(Endoscopy, Data Use |nrastructure
Laparoscopy
Transcoding etc) Metadata

Storage
Data Structure Data Sharing

Resolution .
Privacy ACESSS
Current

Use
Cases

Data Governance

Interoperability &
Synchronization Liability
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Security
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Lab & Vital
Medical . Parameters
Record

[0, 4
OR Dynamics e - /’O
'C) * Surgeon

B Factors
/

Endoscopic £ | Surgical
(IR 1 Data Acquisition Video Data

Kinematics i Patient
Factors

o 2
Deployment | Hyperspectral
7 Imaging

Radiology
(CT, MR, Xray)

Data Storage

The Data

Data Science Q Llfe Cy Cle Data Access
() for Inception of Surgical Artificial

Intelligence

Data Sharing | W4 — Data Processing

Fig.1 The Data Lifecycle, highlighting stages of surgical video data en route to the creation of Al. Schematic outline of essential attributes of
data architecture and infrastructure influencing current data use and future exploration and considerations for adequate governance
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Grand Cha“enge Challenges Algorithms e Help ¥ | Signin H Register

Challenges / SAGES CVS Challenge (CVS-Challenge) / Home

Competitors

The Critical View of
Safety Challenge

A SAGES Initiative

36 Teams
* 16 Countries

L Statistics
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Education and Training

edicated Fellowships

e.g. SAIIL

Medical School

] Publications
Curriculum

. DukeHealth /I k




Surgery & Al Projects Work with us Team SAlIL-Net SAIL-MGH Sponsorship . 4

Welcome to SAIIL Public

At th At the Surgical Artificial Intelligence and Innovation Laboratory (SAIIL), we are committed to fostering a collaborative and open research earch
o, community. We understand the value of sharing resources, datasets, tools, and insights with other researchers, students, and individuals uaie
interested in the field of surgical Al. To accelerate innovation and improve patient care worldwide, we are in the process of gradually making

these resources available to the public.

Education and

Scientific Fellowships Medical School

Publications

Tra . n i ng Meetings e.g. SAIlL Curriculum

DukeHealth
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Surgery & Al Projects SAllL-Net Work with us Team Sponsorship

Surgery & Al Projects SAllL-Net Work with us Team Sy
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Surgical Operating System Framework

* Open Access Model to Prc

Annotation
 Data Structure

* Clear Policies and Regulations
* Transparency and Oversight

e Address Ownership Issues

WU | DukeHealth




™\ Surgical Al Governance Stakeholders
Regulations, Policies and Oversight

Data governance is a principled approach to managing data during its life cycle, from
acquisition to use to disposal.

\

Clinical Patient and

Stateholders of surgical video data 4 et
trials Clinicians

Industry

Researchers

Insurance Companies

Medical Societies

American Board of Surgery & similar

Hospital Administrations
Patients " DATA
. dation ;
Healthcare Providers generation
25% 50% 75% 100% e

4
Fig. 5 Results of statement 6—relevant stakeholders in surgical video Exploration N\
data, as identified by survey participants
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UNIVERSITY

¥ DukeHealth




Trustworthy and Responsible Al Network GERANN

New consortium of healthcare leaders announces
formation of Trustworthy & Responsible Al Network

(TRAIN), making safe and fair Al accessible to every
healthcare organization

March 11, 2024 | Microsoft Source

AMSTERDAM — June 17, 2024 — Monday, at HLTH Europe, the Trustworthy & Responsible Al Network (TRAIN), a
consortium of healthcare leaders, announced its expansion to Europe with the objective to help organizations in the
region operationalize responsible Al through technology-based guardrails. Organizations that have come together to
form the European TRAIN include Erasmus MC (the Netherlands), HUS Helsinki University Hospital (Finland), Sahlgrenska
University Hospital (Sweden), Skane University Hospital (Sweden), Universita Vita-Salute San Raffaele (ltaly), and
University Medical Center Utrecht (the Netherlands), with Microsoft as the technology enabling partner. Foundation 29, a
nonprofit organization that aims to empower patients and transform healthcare through data-driven initiatives and

innovative technologies, has also joined European TRAIN. The network is open to other healthcare organizations in
Europe interested in joining.

DukeHealth
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UNIVERSITY



Designing a Surgical Operating
System (  OS)

A Blueprint for the Future of Surgery

W DukeHealth



* Ethical and Trustworthy Data Generation, Model
Development, and Validation

 Addressing the Critical Need for Benchmarking and Ethical
Considerations

 Data Privacy Generation

Al Model Development

e Validation

 Data Privacy and Governance

@_ DukeHealth
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.OS is a conceptual framework that aims to

' seamlessly integrate surgical teams, operating
rooms patlent data and deV|ces

Standardlzatloh‘
_Efficiency

Safety



5. OS Features

gical User Interface
Integration & Experience
Security &
Access Control
Analytics & Utilities &
—— Monitoring Special Features

Communication
& Collaboration

Duke
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Model Development

* Data training EEas
e Algorithm N AI

optimization e \O. 9 O i
e Model testing R st oono

ALGOROTHM ' \WEOSCYW/
OPTIMIZATION \ NS

* Continuous learning
and improvement




Trustworthiness of Al :
Systems Assu
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* Benchmarking
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* Ensure Al systems are
accurate, safe, and ethical.
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Solution Management




Security and Access B
* *
Control » GDPR *

* *
* 4 *

Ensuring
Data
Integrity

PERS J.-J-IIJ-I.'I
PROTECTION COMMISSION

\\\‘ﬁ\\\ SERVIC ,."I."I

25 ‘/C U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

} Office for Civil Rights
./.;,"“”
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Surgical Video Foundation Models

These models serve as a fundamental base, trained on large datasets,
and can be adapted to a variety of surgical tasks such as:

* Video analysis

* Complication prediction
* Real-time guidance

* Automation

UI!

DukeHealth




Annotation

Temporal Hierarch

| Operation

4’ PHASES

Tasks and
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Annotation A
Spatial Hierarchy

Ne
@ U .
General
anatomy
[ 1
/ Edematous | Cirrhotic. Distended ;
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Tissue
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Cognitive Augmentation

 |Information
e Guidance
e Safety

1 C

e Operational Efficig
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Analysis of intraoperative video

SLEEVEnet
Normal
Surgical Fingerprint
www.saiil.org

Access | Exposure Dissection Stapling Bagging Leak Test
Normal Range

Deviation

U | DukeHealth /I




Real-time Analysis and Deviation Detection

Abnormal case

Abnormal
Surgical Fingerprint

Access Exposure Dissection
Normal Range

Deviation

U DukeHealth




Surgical Fingerprint — Sleeve Gastrectomy.

Case A

¥ DukeHealth

Case B

Normalized Cumulative log Probability




Knowledge Graph in Surgery

which can be used for

® Interactions of objects
INn surgery
o Tool-action-tissue
Interactions.

e Relations of abstract

concepts
o Parkland scale

and its

components
Concept Graph Neural Networks for Surgical Video Understanding
Y. Ban, J. Eckhoff, T. M. Ward, D. A. Hashimoto, O.R. Meireles, D. Rus, G. Rosman
Under revision to IEEE Transactions on Medical Imaging 2022

DukeHealth Duke
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Utilities and Apps

Automation




Potential Current Appli

* Resource Prediction, and Allocation

*Tele-mentoring
* Operative Case Length Prediction
 Attention Awareness

. DukeHealth /l K
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Surgical Al Development

Critical
)%572 CRITICAL VIEW OF g
) cuoc B
AEES U
O
/ 2
Early =~ Early Late
Innovators Adopters Majority Majority Laggards
2.5% 13.5% 34% 34% 16%




Cultural Transformation

@ \

SHARING DATA SHARING KNOWLEDGE CULTURAL DIFFERENCES

U  DukeHealth




Ethical considerations

What should the self-driving car do?
a‘.a.ﬁi
| S

| e |

http://moralmachine.mit.edu

Awad et al. 2018. Nature

¥ DukeHealth




Ethical according to whom?

Preference
for inaction

Spar

; !

Pighe, s ?;’f
Us

Western [] Eastern [] Southern

http://moralmachine.mit.edu

Awad et al. 2018. Nature DUke

UNIVERSITY
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At your local hospital.

Initializing...... Do ...

A Blueprint for the Future of Medicine

UI!

DukeHealth
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Surgical Event Real Time Precietion

DukeHealth

port placement

fundus retraction

release gb peritoneum
dissection of calot's triangle
checkpoint 1

clip cystic artery

divide cystic artery

clip cystic duct

divide cystic duct
checkpoint 2

remove gb from liver bed

bagging

Phase name

SUPR-GAN: SUrgical PRediction GAN for Event Anticipation in Laparoscopic and Robotic Surgery

0
Time (s)

5

10 15

UNIVERSITY



Error Handling and Recovery

Oracle Data Platform — Race Strategy

Data Sources,

Discovery

Trackside
Car Telemetr

3" Party Data

Weather Data

w— Data
Metadata

Connect, Ingest, Transform

Ingestor
Container Engine

For Kubernetes)

Streaming Ingest

(OCI Streaming)
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Batch Processing
Data Floy

Persist, Curate, Create

Real-Time and
Modelled Data

(ADW, Race Strategy

Raw Data Storage I

(OCI Object Storage l :

v v

Governance

Analyze, Learn, Predict

| Analytics and Model

Visualization

(Tyre, Safety Car

Weather, Fuel Burn)

Data Science and
Al Services
(Data Reviey

Data Sandboxes)

Measure,
Act
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Analysis of intraoperative video with Decision SM

Conceptual Phase

ase 3 — Pfevénting Complication |

-
Lo

>

Normal range
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Deviation

Warning!
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Faculty and Fellows SAIIL Team

AL

)

%
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Alumni

£
Daniel Hashimoto, MD MS

Ozanan Meireles, MD Guy Rosman, PhD Daniela Rus, PhD Former Eellow

Director, MGH SAIIL Assoc Director, Engineering Director, MIT CSAIL

YW @MGHSAIIL

Thomas Ward, MD
Former Fellow

Jennifer Eckhoff, MD Yutong Ban, PhD

Lianhao Yin, PhD

Al & Innovation Fellow Former Fellow

Postdoctoral Fellow
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Thank you!

www.SAllL.org

Ozanan Meireles Ozanan.Meireles@Duke.edu

GET INVOLVED

¥ DukeHealth
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