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Continuous health monitoring at both individual and population
level is a key research problem in digital/intelligent health

Individual health monitoring Population health monitoring
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Two enablers: UbiComp + Al

UbiComp for healthcare data
collection (sensing)
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One key challenge in the pathway

ldeal: huge data, good annotation = powerful ML

models to achieve satisfactory performance

e Data accumulation in EHR, mobile, wearable, etc.

Reality: limited data, most the data are unlabelled 2>

fail to meet the application requirement

e Collecting large amount of labelled data and build the model from
the scratch: expensive and time-consuming
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How to build an intelligent healthcare
system with minimal data collection?




Area-level population health profiling Sgl\\’%%tw%g
( a real-world problem from NHS)
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Health

Surveys

CareQuality
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Tell us what
you think

Community Mental Health Survey 2022

This trust will soon be carrying out a survey to find out what
service users think about their care. This is part of a national

programme to improve quality of care and service users’
experiences.

Your views are important to us

Taking part in the survey is voluntary and all answers
are confidential.

If you are selected to take part, your contact details (name and
postal address) will be used by researchers to carry out the

If you do not want fo take part, or have any
questions about the survey please contact:

PALs and Complaints Team
Telephone: 01782 275031
Freephone: 0800 389 9676

Email: patientexperienceteam@combined.nhs.uk
Text: 07718 971 123 (Monday-Friday,
9am-5pm and is charged at your provider’s rate)

Wiley Handbooks in
Survey Methodology

HANDBOOK OF

HEALTH
SURVEY
METHODS

Edited by

Timothy P. Johnson

WILEY




Population
health data

linkage and
Integration
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Pervasive & Mobile Computing
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Summary of limitations Goventty Sy

health surveys clinic data integration Mobile/pervasive Comp
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No matter what approach you have adopted

e limited spatial coverage: unknown/not usable (not accurate)

* Unknown areas: hard-to-reach population, health inequality
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Compressed Population Health Coventry
(CPH): basic idea VRS

CPH can select a subset of
grids (where stakeholders will
do traditional profiling)

CPH Infers the profiles in
un-selected grids

Given a target region for
health profiling

Ongoing project in my team supported by
EPSRC New Investigator Award
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Coventry

2 erSIty
(a) Intra-Disease Spatial Correlations

e a number of studies have highlighted the role of
neighbourhood effects on health

e near regions are more similar in some health

TW O ty p e S indicators than the distant ones

of data

e Multimorbidity, commonly defined as the co-

corre | d t | ons presence of two or more chronic conditions

o statistics for different types of disease may also
correlate with each other.

e e.g., regions with higher obesity rate are more

likely to have higher rates of heart disease and
cancers.
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Jointly use intra- and inter- disease correlations Unlverswgﬁ
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CNN-based representation
learning (extracting two
types of correlations)

Generative Adversarial
Network (GAN) for data
reconstruction
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GAN: two neural networks
contest with each other
* Generator: learns to
generate new data with
the same statistics as
the training set
* Discriminator: another
neural network that is
able to tell how much an
input is "realistic”,

Top 4 for Student Experience Ranked No.12
Teaching Quality UK University
The Times and Sunaay Timas Good Univarsity Guioe 2017 Gmmerfgﬂsﬂy Guida 2018




Datasets 88"\”%%&%%

== Dataset of Ward Boundaries of London

e The dataset includes names, shapes and codes of
630 grids (wards) in London.

e Chronic Diseases Prevalence Dataset

e [t contains prevalence rate of 17 chronic diseases:
from 2008 to 2017 of London ward level.
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. . Soventry
Results for missing data completion ~ -"""*"™

* Our CNN+GAN model outperforms all baseline ones across all
disease in all evaluation metrics and settings (e.g. data missing rate).

2016 2017
Methods R=01 R=03 R=05 R=01 R=03 R=05
’ ‘ RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
CF 0.1661 0.1345 0.1657 0.1340 0.1640 0.1298 | 0.1983 0.1625 0.2010 0.1659 0.2028 0.1702

Average(spatial) 0.1478  0.1202 0.1400 0.1153 0.1401 0.1149 | 0.1581 0.1310 0.1525 0.1288 0.1444 0.1229
Median(spatial) 0.1518  0.1252  0.1367  0.1110  0.1355  0.1100 | 0.1509  0.1233  0.1435 0.1201  0.1370  0.1150
NMF 0.1518  0.1180  0.1346  0.1064 0.1412 0.1113 | 0.1661 0.1331  0.1513  0.1208  0.1330  0.1054

TD 0.1403  0.1045 0.1275 0.1014 0.1250 0.1002 | 0.1304 0.0997 0.1221 0.0970 0.1181 0.0923

Linear Regression | 0.1026  0.0763  0.0947  0.0730 0.0927 0.0687 | 0.1132 0.0934 0.0887 0.0714 0.0853 0.0671
Auto-encoder 0.0857 0.0616  0.0817 0.0597 0.0821 0.0597 | 0.0772 0.0575 0.0681 0.0520 0.0654 0.04%
stKNN 0.0794  0.0557 0.0752 0.0546  0.0732  0.0528 | 0.0739  0.0520 0.0632 0.0472  0.0609  0.0459
Median(temporal) | 0.0830  0.0564  0.0769  0.0537 0.0760 00525 | 0.0776 0.0534 0.0662 0.0475 0.0610 0.0434
Average(temporal) | 0.0788  0.0547 0.0737 0.0523 0.0728 0.0512 0.07[25 0.0514 0.0615 0.0455 0.0579  0.0425

DME 0.0691  0.0525 0.0619 0.0444 0.0643  0.0435 | 0.0694 0.0634 0.0624 0.0459 0.0614 0.0415

GAIN 0.0948  0.0597 0.0616  0.0509 0.0580 0.0464 | 0.0617 0.0491 0.0507 0.0415 0.0482 0.0390

CPH,_ 0.0882  0.0726  0.0513 0.0393  0.0417 0.0322 | 0.0624 0.0498 0.0511 0.0397 0.0365 0.0288

CPH,_ 0.0856  0.0678 0.0718 0.0594 0.0517 0.0371 | 0.0608 0.0448 0.0408 0.0324 0.0369 0.0285

CPH 0.0573 0.0427 0.0455 0.0352 0.0392 0.0295 | 0.0526 0.0411 0.0400 0.0316 0.0360 0.0281
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Reduction of Health Profiling Cost

Coventry &2
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Assigns tasks to an average of 21.67% of regions,
while ensuring that the overall profiling accuracy meets
healthcare requirement
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Population health impact

Covent
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Cost-effective health monitoring

e less cost (given a spatial coverage constraint)
* higher spatial coverage (given a financial constraint)

Augment existing data and address health inequality

e Improve data completeness and quality for secondary data
e know the health profiles of unknown (ignored) areas

e Comprehensive insights and less bias for policy making

e Alleviate health inequality for the overall population
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Goventry &g

Thank You !
Q&A
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