HEADLINER Revolutionizing surgery with surgical operating systems: The future of integrated healthcare

Ozanan Meireles

Surgeon at Massachusetts General Hospital Director MGH Surgical Artificial Intelligence and Innovation Laboratory (SAIIL) Assistant Professor of Surgery Harvard Medical School

13-14 September INTELLIGENT HEALTH 2023 Basel, Switzerland

@IntHealthAl
 #IntelligentHealthAl
 #SaveLivesWithAl

HEADLINE PARTNER

U NOVARTIS

PLATINUM SPONSOR INNOVATION & TECHNOLOGY

The Novartis

Foundation

CITY PARTNER

Deloitte.

Revolutionizing Surgery with Surgical Operating Systems

Intelligent Health Summit Basel, Switzerland – September 14, 2023

Ozanan R. Meireles, MD, FACS

Assistant Professor of Surgery - Harvard Medical School Massachusetts General Hospital

Revolutionizing Healthcare: Introducing the Concept of a Surgical Operating System (**S**.OS)

A Blueprint for the Future of Medicine

The Era of Technological Disruption

ChatGPT

uting in

10

Innovation and Safety

"Technology is altering the landscape across various sectors. and the future is unfolding before our eyes."

F1 Safety Evolution over the last 30 years and beyond

◙ @_projectf1 / ♥@_projectf1

Gap to GAS

PROJECT F1

Surgical Disruptions (in the last 200 years)

- General Anesthesia 1840s
- Antiseptic Surgery 1860s
- Endoscopic Procedures 1960s
- Cognitive Computing 2010s

20 years later

What is happening in the Operating Room now ?

OR Data Generation

MGH

Data sources and Analytics

Video DATA

More computing power

67 F 67 E 0

56

9

More powerful/efficient techniques

 $\begin{array}{c}
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\$

MASSACHUSETTS GENERAL HOSPITAL

784

Large amount of DATA

The average hospital produces roughly 50 petabytes of data every year. That's more than twice the amount of data housed in the Library of Congress, and it amounts to 137 terabytes per day.

terabytes of data during a win or lose a race.

BACE TEAMS COMBINED TO GENERATE 43 TERABYTES OF DATA FROM THEIR VEHICLES AT THE 2014 U.S. GRAND PRIX IN AUSTIN, TX

243 TERABYTES OF DATA COMPARED TO

EQUIPPED WITH HUNDREDS OF SENSORS, F1 CARS PROVIDE A STREAM OF DATA THAT'S ANALYZED THOUSANDS OF MILES AWAY IN NEAR REAL-TIME

.170 secs	.300 secs	.600 secs	1.923 secs
Round trip for race data	Round trip for race data	Difference between 1st	World record fastest
to transfer between UK	to transfer between UK	and 2nd place at 2014	F1 pitstop, set by Red
and U.S.	and Australia	Spanish Grand Prix	Bull in Austin 2013

RACE FANS GENERATED MORE THAN 2.3 TERABYTES OF AT&T MOBILE DATA DURING THE U.S. GRAND PRIX BY SHARING PHOTOS AND SENDING TWEETS, LESS THAN 1% COMPARED TO THE RACING TEAMS.

MGH

The Healthcare

Engl J Med. 2023;388(2):142-

153. 10.1056/NEJMsa2206117

SURGICAL SAFETY CHECKLIST (AUSTRALIA AND NEW ZEALAND)

Innovation dicho	rínnaesthesia ▶ ▶ ▶ ▶ ▶	Before skin incision > > >		
minovation dichotomy		TIME OUT	SIGN OUT	
• Recent study reviewed 2,800+ i	npatient	CONFIRM ALL TEAM MEMBERS HAVE INTRODUCED THEMSELVES BY NAME AND ROLE SURGEON, ANAESTHESIA PROFESSIONAL AND NURSE VERBALLY CONFIRM PATIENT SITE	NURSE VERBALLY CONFIRMS WITH THE TEAM: THE NAME OF THE PROCEDURE RECORDED THAT INSTRUMENT, SPONGE, NEEDLE AND OTHER COUNTS ARE CORRECT	
records from 11 U.S. hospitals.	R ON PATIENT AND	PROCEDURE ANTICIPATED CRITICAL EVENTS SURGEON REVIEWS: WHAT ARE THE CRITICAL	HOW THE SPECIMEN IS LABELLED (INCLUDING PATIENT NAME) WHETHER THERE ARE ANY EQUIPMENT PROBLEMS TO BE ADDRESSED	
 ~25% of records had at least or event, preventable or not. 	AVE A : e adverse	OR UNEXPECTED STEPS, OPERATIVE DURATION, ANTICIPATED BLOOD LOSS? ANAESTHESIA TEAM REVIEWS: ARE THERE ANY PATIENT-SPECIFIC CONCERNS? NURSING TEAM REVIEWS: HAS STERILITY	SURGEON, ANAESTHESIA PROFESSIONAL AND NURSE REVIEW THE KEY CONCERNS FOR RECOVERY AND MANAGEMENT OF THIS PATIENT	
 7% of all admissions had at lease preventable event. 	AENTASSISTANCE AVAILABLE Stoones DRENI? ATE INTRAVENOUS ACCESS INED	(INCLUDING INDICATOR RESULTS) BEEN CONFIRMED? ARE THERE EQUIPMENT ISSUES OR ANY CONCERNS? HAS ANTIBIOTIC PROPHYLAXIS BEEN GIVEN WITHIN THE LAST 60 MINUTES? YES NOT APPLICABLE		
• 1% had events of serious sever higher.	TY OF PMENT: DR SPECIAL EQUIPMENT) IS HEATRE, HAS IT BEEN ONFIRMED?	HAS THROMBOPROPHYLAXIS BEEN ORDERED? YES NOT REQUIRED IS ESSENTIAL IMAGING DISPLAYED?		
Bates DQ, Levine DM, Salmasian H, et al. The safety of inpatient health care. New		VES NOT APPLICABLE		

Healthcare, specially in surgery is a sector where technology's promise has not been fully realized.

"We have advanced machinery and data analytics, but the operating room still relies heavily on human judgment, sometimes leading to inefficiencies"

00000

100010

100

10

S.OS is a conceptual framework that aims to seamlessly integrate surgical teams, operating rooms, patient data, and devices.

0

0

The second secon

:0:

Standardization

Efficiency

Safety

Preparation, Creation, and Implementation

Foundational work

- Annotation 🖂
- Data Structure and Use 🖂
- Governance Policies, Regulations, and Oversight

Structural needs

- Video Data Acquisition Framework
- Creation of a Community 🖂
- Management through Data Lifecycle

Knowledge creation and dissemination

- Scientific Research 🖂
- Education 🖂
- Cultural Transformation

:0::

 $X^2 - 4X + 5 \le 5$

 $B \cap C) = 22$

 \overline{m}

12 :

 $X^2 - 4X \le 0$

) + n (C)-n (B∩ C

Surgical Operating System Framework

(10)

- Open Access Model to Promote Collaboration
- Standardization
 - Annotation
 - Data Structure
- Clear Policies and Regulations
- Transparency and Oversight
- Address Ownership Issues

Surgical DATA

MGH 1811

DATA Use and Structure

Objective: Establish a **framework for video data use in surgery** to improve collaboration and proposed methods to structure the use of surgical video for **clinical use**, **education**, **and research** applications.

Annotation Framework Hierarchical Structure with Expandable Granularity

Temporal Events

Phase (generic)

Step (procedure- specific)

Task (generic)

Action (generic)

Spatial Events

Anatomic region

Specific anatomy

General anatomy

Tissue characteristics

S. OS Features

Technological Integration

User Interface & Experience

Security & **Access Control**

Communication & Collaboration

Analytics & Monitoring

Process Management

- Orchestration Surgical Procedures
- SOS could manage the scheduling of surgical teams, rooms, and monitor surgery in real-time.

Resource Allocation

- Maximizing Efficiency Allocation and Reallocation
- Staff
- Equipment
- Room

Ľ

for success across people, processes and technology

Device Management

MASSACHUS

GENERAL HO

MGH

Data Management

Organizing Critical Information

Maintenance of structure data

User Interface

Other Features

I/O Operations

Networking

System Monitoring

ADVERSE EVENT RATE IS 66% HIGHER WHEN THE SURGEON IS UNDER STRESS

Utilities and Apps

- Specialized software tools
- Pre-operative checklists
- Real-time patient vitals monitoring
- Intra-operative guidance
- Billing
- Documentation

Utilities and Apps

TYPE OF FDA APPROVAL

510(K) PREMARKET NOTIFICATION

FDA APPROVALS FOR ARTIFICIAL INTELLIGENCE-BASED Devices in medicine

				DE NOVO PATHWAY
2016 11	Arterys Cardio DL		software analyzing cardiovascular images from MR	© PMA
2017.03.	EnsoSleep		diagnosis of sleep disorders	
2017.11.	Arterys Oncology DL		medical diagnostic application	
2018.01.	ldx	1	detection of diabetic retinopathy	
2018.02	ContaCT		stroke detection on CT	
	OsteoDetect		X-ray wrist fracture diagnosis	
2018.03	Guardian Connect System		predicting blood glucose changes	ENDOCRINOLOGY
2018.05	EchoMD (AEF Software)		echocardiogram analysis	
2018.06.	DreaMed		managing Type 1 diabetes.	
2018.07	BriefCase		triage and diagnosis of time sensitive patients	KADIOLOGI
	ProFound™ Al Software V2.1		breast density via mammogprahy	
2018.08.	Arterys MICA		liver and lung cancer diagnosis on CT and MRI	
2018.09.	SubtlePET		radiology image processing software	
	AI-ECG Platform		ECG analysis support	
2018.10	Accipiolx		acute intracranial hemorrhage triage algorithm	
	icobrain		MRI brain interpretation	
2018.11	FerriSmart Analysis System		measure liver iron concentration	
2019.03.	cmTriage		mammogram workflow	NEUROLOGY
2019.04	Deep Learning Image Reconstruction		CT image reconstruction	
2019.05	HealthPNX		chest X-Ray assessment pneumothorax	
2019.06	Advanced Intelligent Clear-IQ Engine		noise reduction algorithm	
2019.07	SubtleMR		radiology image processing software	OPHTHALMOLOGY
	Al-Rad Companion (Pulmonary)		CT image reconstruction - pulmonary	
2019.08	Critical Care Suite		chest X-Ray assessment pneumothorax	
2019.09	Al-Rad Companion (Cardiovascular)		CT image reconstruction - cardiovascular	
2019.11	EchoGo Core		quantification and reporting of results of cardiovascular function	ONCOLOGY
2019.12	TransparaTM		mammogram workflow	
2020.01 -	QuantX		radiological software for lesions suspicious for cancer	
	Eko Analysis Software		cardiac Monitor	

Experimental Phase

Research : Intraoperative decision support

- Shrinking data for surgical training
- Technique that reduces video files to one-tenth their initial size enables speedy analysis of laparoscopic procedures.

SAIIL – MGH – MIT

Computer Vision and Endoscopy

Cadens - Imagia - Satis © 2016 - all rights reserved

a joint development from **Cadens, Imagia, Satis**

AI4GI Video and copy rights

Real Time Phase Detection

Surgical Artificial Intelligence & Innovation Laboratory - Massachusetts General Hospital

Experimental Phase

Artificial intelligence prediction of cholecystectomy operative course from automated identification of gallbladder inflammation

MASSACHUSE GENERAL HOS

MGH

Experimental Phase

Surgical Fingerprint – POEM

Deviation Analysis and Detection

Analysis of intraoperative video – Surgical Fingerprint

Experimental Phase

Case 1 – Uncomplicated Surgery

Surgical Fingerprint – Sleeve Gastrectomy

Potential applications - **<u>S. OS Apps</u>**

- Attending notification system
 - Notify attendings if the trainees are nearing critical portions of the operation.

Peer Review

- Augmented Morbidity and Mortality meetings
- Board certification
- Hospital credentialing and recredentialing

Tele-mentoring

- Establish automated communication link to human mentor when error is predicted or identified.
- Battlefield and Rural Areas support, to medical staff who may not have the necessary specialty specific knowledge

Knowledge Graph in Surgery

which can be used for

- Interactions of objects in surgery
 - Tool-action-tissue interactions.
- Relations of abstract concepts
 - Parkland scale and its components

Concept Graph Neural Networks for Surgical Video Understanding Y. Ban, J. Eckhoff, T. M. Ward, D. A. Hashimoto, O.R. Meireles, D. Rus, G. Rosman Under revision to IEEE Transactions on Medical Imaging 2022

Utilities and Apps

Automation

Al and Mechanical Automation

Experimental Phase

Ken Goldberg Professor, Industrial Engineering and Operations Research William S. Floyd Jr. Distinguished Chair in Engineering, UC Berkeley

Error Handling and Recovery

Surgical Event Real Time Prediction

SUPR-GAN: SUrgical PRediction GAN for Event Anticipation in Laparoscopic and Robotic Surgery

Analysis of intraoperative video with Decision Support.

5. OS = Cognitive Augmentation

Information, Guidance, Safety, and Operational Efficiency

Moravec's Paradox

- *"Robots find the difficult things easy and the easy things difficult"*
- "Contrary to traditional assumptions, high-level <u>reasoning</u> requires relatively little computation power, whereas low-level <u>sensorimotor</u> skills require enormous computational resources"

Potential Failures

7 REVEALING WAYS AI FAIL

IEEE Spectrum

2) Embedded Bias

https://spectrum.ieee.org/ai-failures

Brittleness

- Embedded Bias
- Catastrophic Forgetting
- Explainability
- Quantifying Uncertainty
- Common Sense

• Math

MGH

Real life examples of AI Failures

HANDS ON THE WHEEL -

Another Tesla with Autopilot crashed into a stationary object—the driver is suing

Fail: Microsoft's AI Chatbot Corrupted by Twitter Trolls

Google Home outage hits users, '100 percent failure rate' reported

Apple's Face ID Defeated by a 3D Mask

IBM's Watson supercomputer recommended 'unsafe and incorrect' cancer treatments, internal documents show

Obstacles and Limitations in Surgical Al

Data

- Limited access
- Limited annotation
- Regulation
- Systemic biases

Clinician

- Limited time
- Productivity pressure
- Culture

Researcher

- Limited exposure
- Innovation pressure

- Market pressure
- Culture

Patient

- Privacy
- Healthcare pressure
- Clinician relationship

Surgical DATA Standards

Surgical Al Governance Regulations, Policies and Oversight

Surgeons

2023/24

Promote Diversity

Education and Training

Medical School Curriculum

Publications

Professional Preparation

Computer science

Ethics

Programing

Work force

Training

Credentialing

Simulations

Cultural Transformation

SHARING DATA

SHARING KNOWLEDGE

CULTURAL DIFFERENCES

Other Considerations

	Patient, Provider,
Who OWNS the data?	Hospital, Payor
Who gets the credit?	Who gets the blame ?

How do you explain Al-driven decisions to patients?

Can you challenge the decision ?

Surgical AI

A few years from now

At your local hospital.

Initializing S.OS/

A Blueprint for the Future of Medicine

Faculty and Fellows

Ozanan Meireles, MD Director, MGH SAIIL

Guy Rosman, PhD Assoc Director, Engineering

SAIIL Team

Daniela Rus, PhD Director, MIT CSAIL

Alumni

Daniel Hashimoto, MD MS Former Fellow

Yutong Ban, PhD Postdoctoral Fellow

Jennifer Eckhoff, MD AI & Innovation Fellow

Thomas Ward, MD Former Fellow

Thank you!

www.SAIIL.org

OzMeireles@MGH.Harvard.edu

GET INVOLVED

