HEADLINER USE CASE Elevating the accuracy of diagnosis, doctor productivity and patient satisfaction with Apollo Clinical Intelligence Engine

Dr Sujoy Kar

Chief Medical Information Officer & Vice President Apollo Hospitals

13-14 September INTELLIGENT HEALTH 2023 Basel, Switzerland

@IntHealthAI
 #IntelligentHealthAI
 #SaveLivesWithAI

HEADLINE PARTNER

NOVARTIS

PLATINUM SPONSOR INNOVATION & TECHNOLOGY

CITY PARTNER

The Novartis Foundation Deloitte

Clinical AI – ML Programs Snapshot of Ongoing Programs at Apollo Hospitals

September 2023

PLEASE DO NOT RECORD THE CONVERSATION OR TAKE SCREEN VIDEOS OR SCREEN SHOTS AS THE CONTENTS ARE PROPRIETARY AND MAY LEAD TO IP VIOLATIONS

HARNESSING DILIGENTLY COLLECTED EMR DATA OVER 15 YEARS

Empowering

PATIENTS

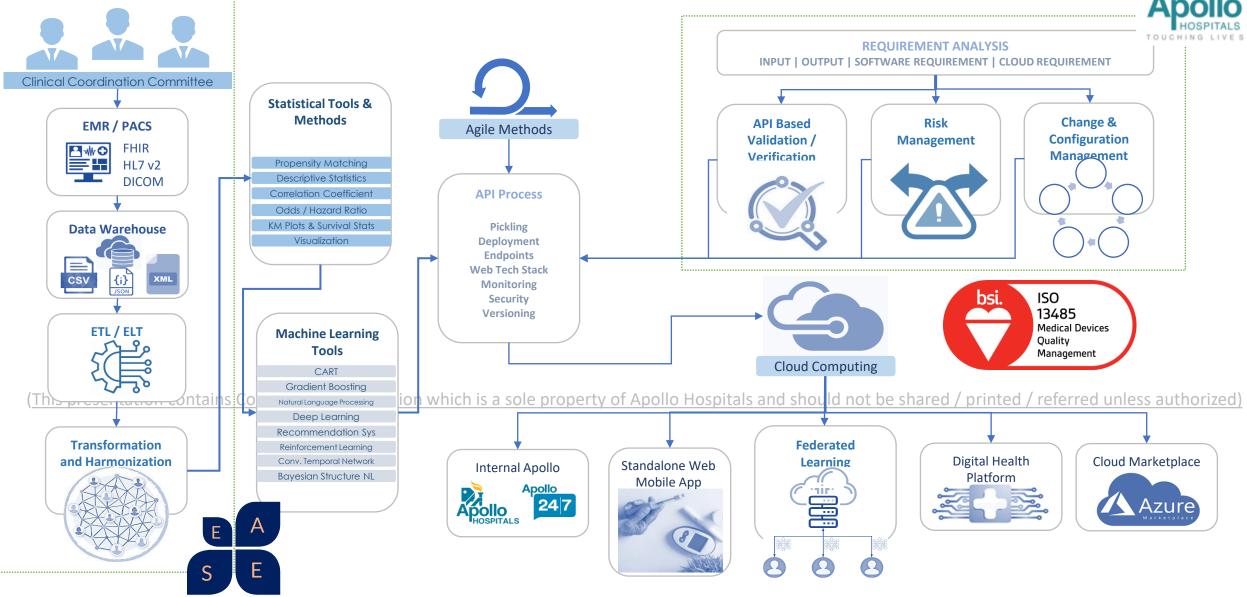
"enable with better access and

meaningfully used data to

promote health & wellness"

"enhancing quality of care by comparing performance and learning from each other"

<u>optimizing</u> OPERATIONS

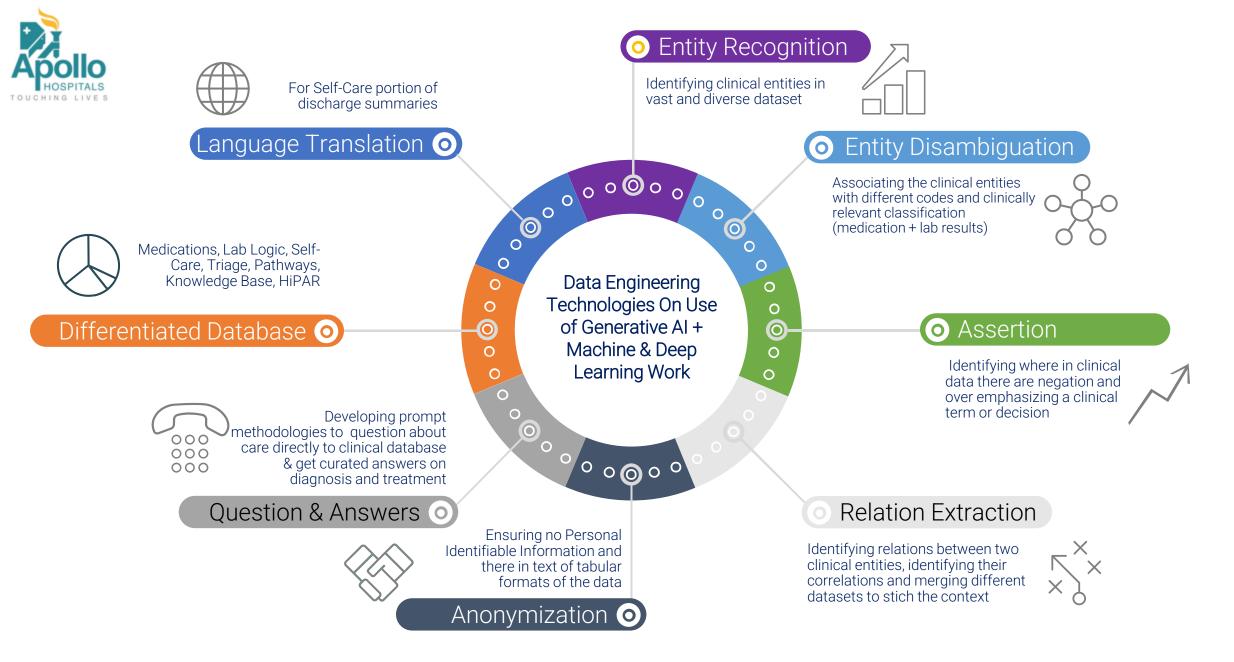

"improving throughput, enhancing patient safety and the potential for reducing healthcare cost"

<u>Augmenting Needs</u> COMMUNITY

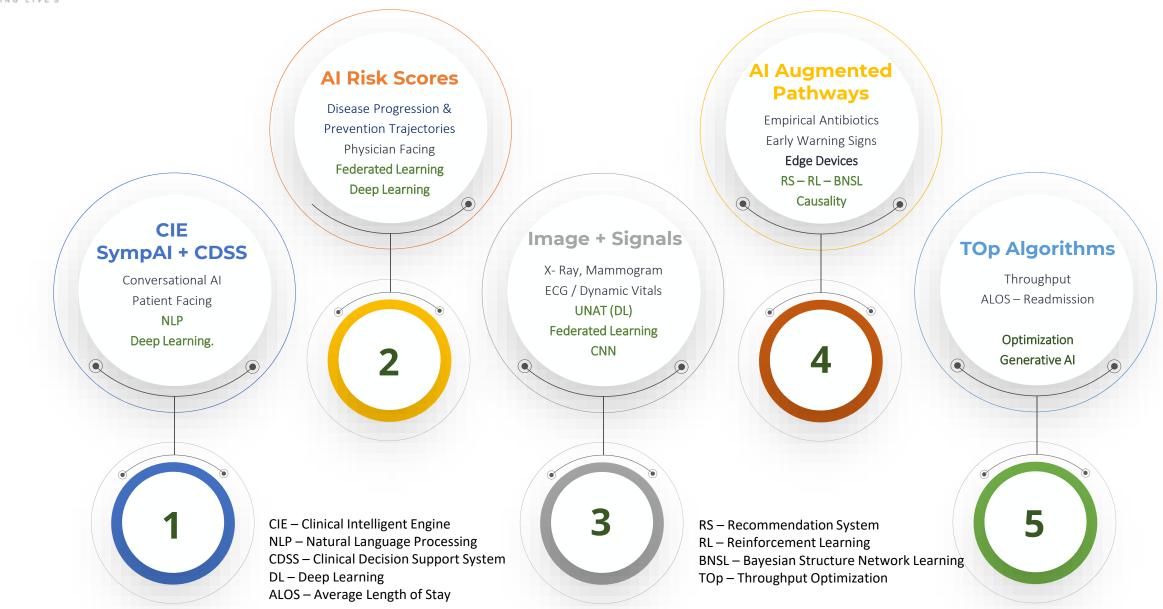
"creating insights & **state-of-theart** solutions, that are user friendly and can **reach the last mile**"

Process Flow for Planning – Design – Development - Deployment

https://rdcu.be/c9MN3 https://doi.org/10.1007/s40012-023-00381-2


Ethics Imperative Constituents for Ethics in AI and Digital Health

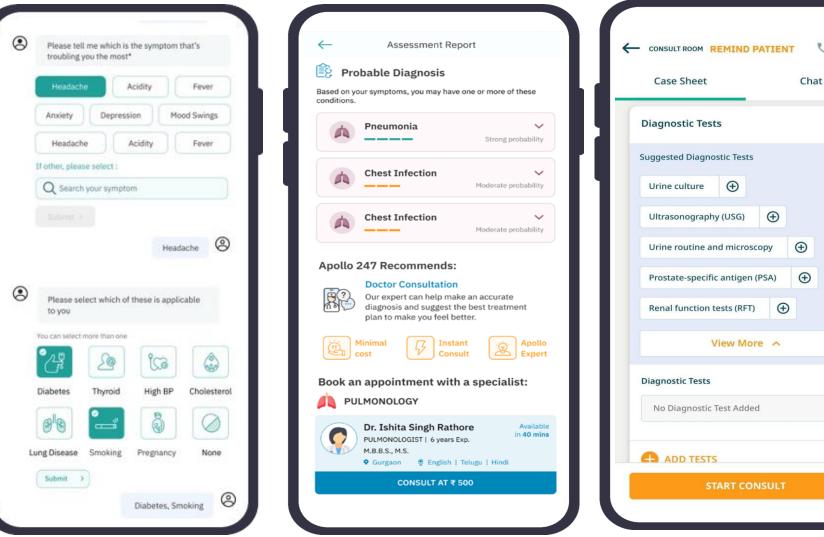
(This presentation contains Confidential Information which is a sole property of Apollo Hospitals and should not be shared / printed / referred unless authorized)



EASE Framework is an Apollo Hospitals Concept

Clinical AI Workstreams

Bring Apollo Clinical Expertise to every user interaction


For Customers/Patients For Clinicians **Data Science &** Contextual Health Info discovery & Next best action Al assistance in clinical practice Machine Learning **CIE assisted Doctor consult** Discover causes to symptoms Collect complete history by asking right questions, 10% of users in 247 typically search via symptoms, diagnosis, etc. **50MM+** people search on google assist doctor in rare diagnosis **Discover Labs/Imaging Case Info** Automated process that mimics a typical doctor-50%+ users do not know what tests to do patient interaction to triage serious cases and collect symptoms and past history info of the case at hand Reasoning Engine **Drug Interactions - Safety Advice** Typically, 2%+ prescriptions have drug interactions **Case Summarisation** Clinical Automated case summary is generated, including Knowledge ് real time extraction of past history from previous **Discover Specialty and Doctors** encounters. Saves times in OP, helps focus on 25%+ people do not know which doctor to see diagnosis and treatment Case Analysis Medical **Health Genie** Clinical recommendations are built using Apollo's Intelligence vast clinical data repository. Next best steps are Constantly watch a consumer's record to find issues suggested with explainability to help doctors in medications, provide actionable next steps, etc. Platform consider all possibilities before finalising diagnosis

(This presentation contains Confidential Information which is a sole property of Apollo Hospitals and should not be shared / printed / referred unless authorized)

and treatment

Clinical Intelligence Engine

SympAl & CDSS

For Customers / Patients [247 Platform] -

For Clinicians AI assistance in clinical practice

~

Key Highlight 10-15% Clinician time saved Used by **1500+** doctors across specialties Covers **1300** conditions and **800** symptoms Covers **95%** of Daily case mix in outpatient setting >80% Accuracy with

Google partnership (Benchmark 50-60%)

Contextual Health Info discovery & Next best action (This presentation contains Confidential Information which is a sole property of Apollo Hospitals and should not be shared / printed / referred unless authorized)

AI based Disease Progression & Risk Score Models

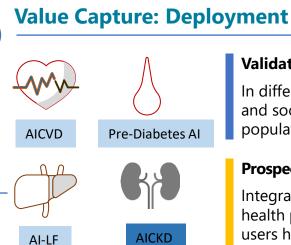
Design – Development – Deployment

Problem we faced

Growing epidemic of non-communicable diseases like Cardiovascular Diseases. Diabetes, Kidney Failure, Liver Fibrosis etc.

Risk scores for NCDs onset to help identify at-risk patients

Value Creation: Methodology


Longitudinal Patient Data 5 – 10 years

Over 100+ clinical predictors from health check and discharge data

Deep Learning Algorithms with Time to Event Hazard Analysis – Accuracy [0.86 – 0.92]

Based on risk category recommends peer reviewed Clinical Pathways [Next best action]

ISO – 13485 Certification [SaMD]

AICVA

AICOPD

Validation

In different geographic, ethnic and socio-economic population worldwide

Prospective Use Feedback loop

Integrated to EMR & digital health platforms data from the users help calibration of the model across ecosystems

Personalized

Provides personalized recommendations to reduce the modifiable risks through holistic program

Ν

API Calls (Since	e Jan 2022)
870K+	Apollo Hospitals
10K+	Outside Apollo Hospitals (July 2023)
nferences	
AICVD Stats	
ligh Risk	14%
/loderate Risk	17%
Prediabetes AI	
ligh Risk	0.6%
/loderate Risk	9.3%

AI based Disease Progression & Risk Score Models

Design – Development – Deployment

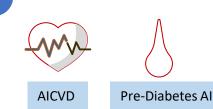
Problem we faced

Growing epidemic of non-communicable diseases like Cardiovascular Diseases, Diabetes, Kidney Failure, Liver Fibrosis etc.

Risk scores for NCDs onset to help identify at-risk patients

Value Creation: Methodology

Longitudinal Patient Data 5 – 10 years


Over 100+ clinical predictors from health check and discharge data

Deep Learning Algorithms with Time to Event Hazard Analysis – Accuracy [0.86 – 0.92]

Based on risk category recommends peer reviewed Clinical Pathways [Next best action]

ISO – 13485 Certification [SaMD]

Value Capture: Deployment

AI-LF

AICOPD

AICKD

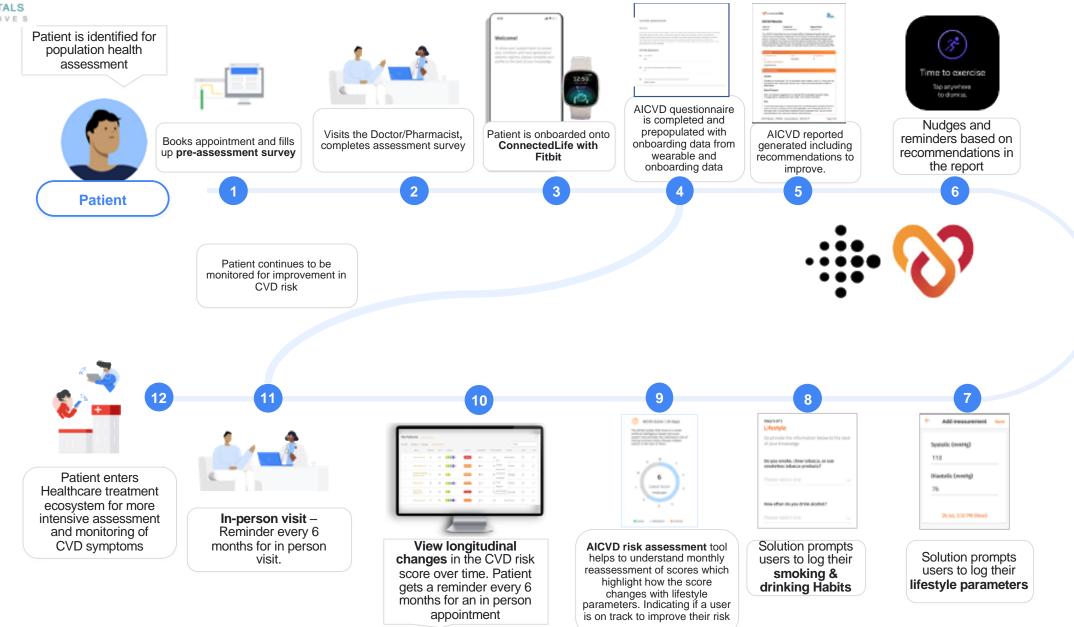
AICVA

Validation

In different geographic, ethnic and socio-economic population worldwide

Prospective Use Feedback loop

Integrated to EMR & digital health platforms data from the users help calibration of the model across ecosystems


Personalized

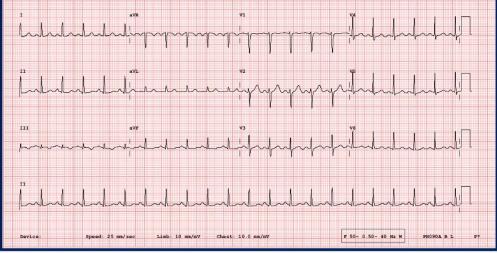
Provides personalized recommendations to reduce the modifiable risks through holistic program

Apollo HOSPITALS

AI Based Risk Scores – Integration to Fitbit <> ConnectedLife

Conversion of DICOM ECG Images to Tabular Format for building Large Language Model in Diagnoses and Disease Progression of Cardiovascular Conditions

Bharath Potla, Dr Shivkumar J, Dr Sai Praveen Haranath, Dr Sujoy Kar, Dr Sangita Reddy



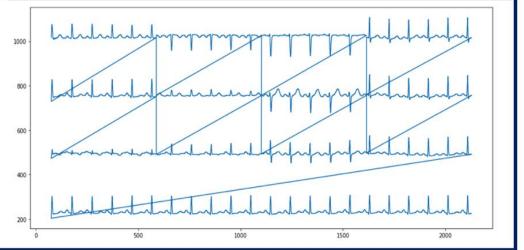

Figure 1: Sample of an Original DICOM Image ECG

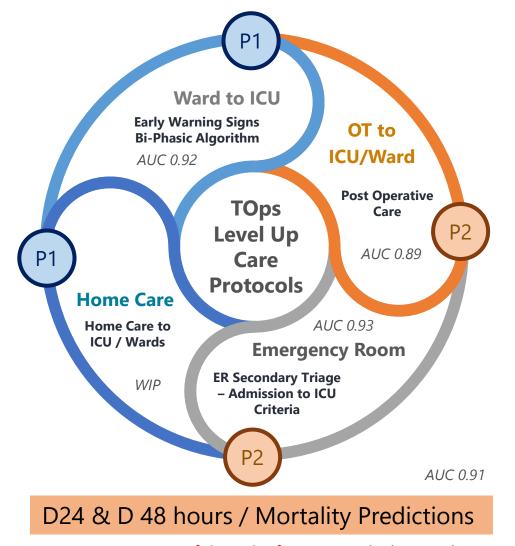
Figure 2: Converted ECG Image from the .csv (tabular format) – (x, y) coordinates of Figure 1

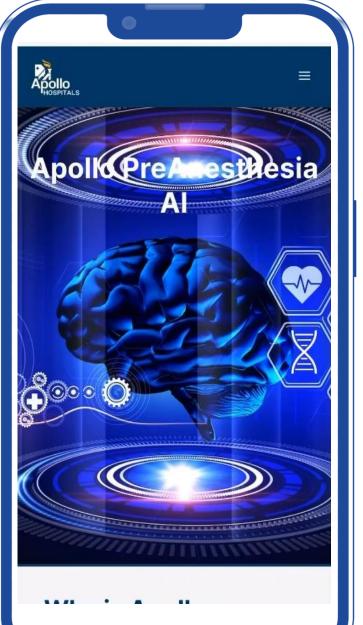
Category	Age >/< 45	Normal / Abnormal	Gender	Heart Rate >/< 90/min
Lead-I	0.46	0.79	0.4	0.5
Lead-II	0.58	0.9	0.47	0.56
Lead-III	0.52	0.7	0.69	0.57
Lead-IV	0.63	0.72	0.62	0.53
Lead-V	0.7	0.86	0.48	0.68
Lead-VI	0.66	0.72	0.62	0.54
Lead-VII	0.56	0.77	0.62	0.58
Lead-VIII	0.72	0.8	0.59	0.59
Lead-IX	0.65	0.85	0.42	0.65
Lead-X	0.61	0.79	0.66	0.72
Lead-XI	0.53	0.74	0.62	0.7
Lead-XII	0.46	0.76	0.61	0.56
Lead-XIII	0.72	0.8	0.65	0.64

Figure 4: Lead wise AUC scores for different clinical variables with definite higher scores for clinical categories (normal vs abnormal) comparing to others

Figure 3: Cross Correlation of ECG - database in comparison to different clinical variables, showing consistency with ECG Reproducibility using DICOM to .csv conversions.

Apollo Throughput Optimisation (TOps Algorithms) Level Up Clinical Protocols


	(TIM)			
	Pre-Anesthesia Algorithm	Early Warning Systems Wards / Telemetry	ER Triage to ICU	Discharge in 24/48 hours
Clinical Needs	 Risk Assessment tool for surgeries Estimates surgical duration, blood loss and post operative patient placement 	 Tool to help recognize early signs of clinical deterioration and trigger more intensive care Prediction of Mortality Risk Stratification SHAP values Advice for monitoring 	 Identifies patient that could possibly transfer to ICU from ER Risk of mortality in next 7 to 28 days 	 Predicts probability of patient discharge in the next 24/48 hours Use of Generative AI + Differentiated Database in building Discharge Summaries
Design & Development	 347K Surgeries 8 locations 500+ surgery types over 18 months 	 145K Critical Patient (Anonymized) Data Biphasic Model - Vitals + Clinical Features + Lab Data = XGBoost + Nested BERT 	 Identifies patient that could possibly transfer to ICU from ER – Over 5K Data Prototype Research - <u>https://www.nature.com/article</u> <u>s/s41598-021-92146-7</u> 	 Collaborative Model with leading Organization 160K Patient Data Business Process Re- engineering
Ground Truth	Accuracy – $89\% + R^2 = 0.51$	Accuracy – <mark>92%</mark>	Accuracy - 93%	Accuracy - <mark>93%</mark>
Impact	Improved OT Scheduling*	Remote Health Monitoring*	> 10K Risk Stratified (COVID)	ALOS Reduction* Improved Discharge Processes*


(This presentation contains Confidential Information which is a sole property of Apollo Hospitals and should not be shared / printed / referred unless authorized)

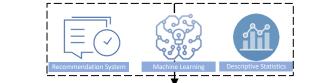
* Ongoing Prospective Use

Throughput Optimization Pre-Anaesthesia Algorithm

Empirical Antibiotic Recommendation System (Apollo EARS) Al augmented Pathways

Challenges

How to aid the doctors in selection of ideal antibiotic


Detect, Respond, and Contain Resistant Pathogens

Patient factors and history could differ, which needs to be considered

Analytics Insights

- Hospital Acquired Infections
- Community Acquired Infections

HOSPITALS	Apolio Empiri Recommenda			
NAME: SUJOY	AGE: 45		LOCATION: MUMBAI	
UHID: 123456	GENDER: MALE		DATE OF REPORT: 25-7-20	
Clinical Condition	ACUTE PHARYNGITIS/SORE THROAT	Specimen	Throat Sw	
Service	OP	Kidney Disease	Y	
Liver Disease	Yes	Hypersensitivity	Y	
Hypersensitivity Antibiotic name	Cefaclor	Hypersensitivity Antibiotic name	Cefadro	
Hypersensitivity Antibiotic name	Cefalexin	Hypersensitivity Antibiotic name	Cefazo	
Hypersensitivity Antibiotic name	Cefepime	On going Antibiotic name	Ciprofloxad	

Organism Name	Probability	Antibiotic 1	Antibiotic 2	
Klebsiella pneumoniae	0.47	Levofloxacin	Gentamicin	
Staphylococcus aureus	0.11	Chloramphenicol	Tetracycline	Amo
Streptococci species	0.06	Clindamycin	Ampicillin	
ocation Racod Rocul	ts (Recommendation	n Organism, Probability & S	ensitive Antibiotics.)	
Organism Name	Probability	Antibiotic 1	Antibiotic 2	

Ground Truth

- Provides an accurate Empirical Antibiotic Recommendation for the Physician at point of care
- Yields 3 top probable organisms in the sample collected with corresponding antibiotic sensitivities

Impact

- 7 Apollo Hospitals Prospective Roll Out
- Outcome Accuracy of >80% with change of Antibiotics in 15K Cohort

Key Highlight

Accuracy **87%**

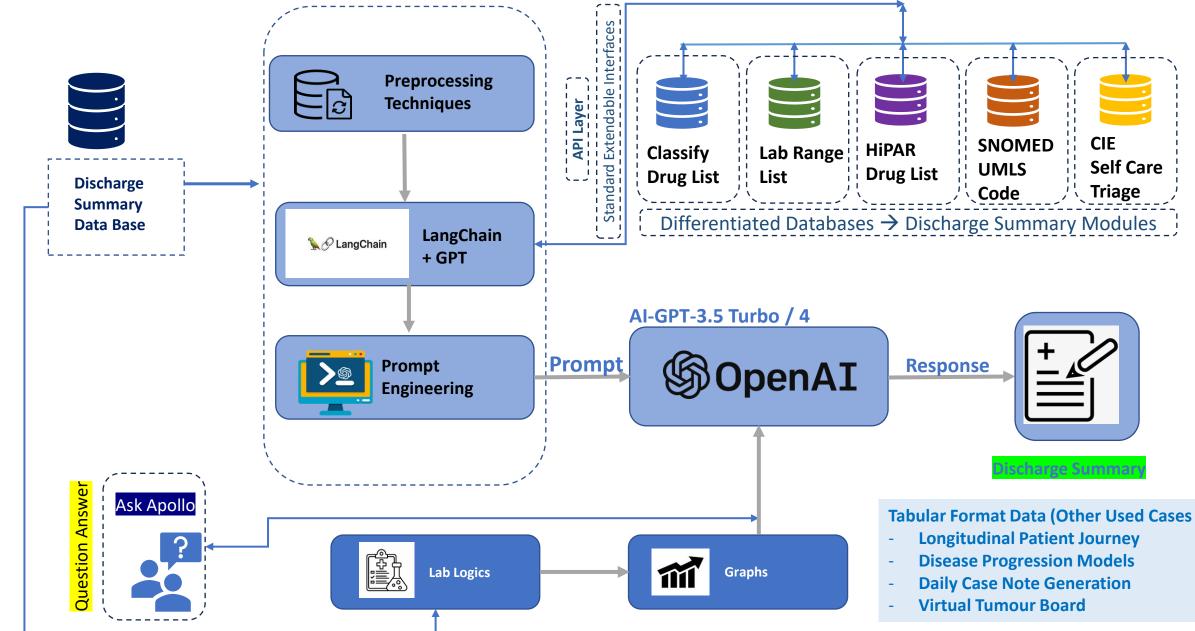
The program currently covers:

260K+ Isolates

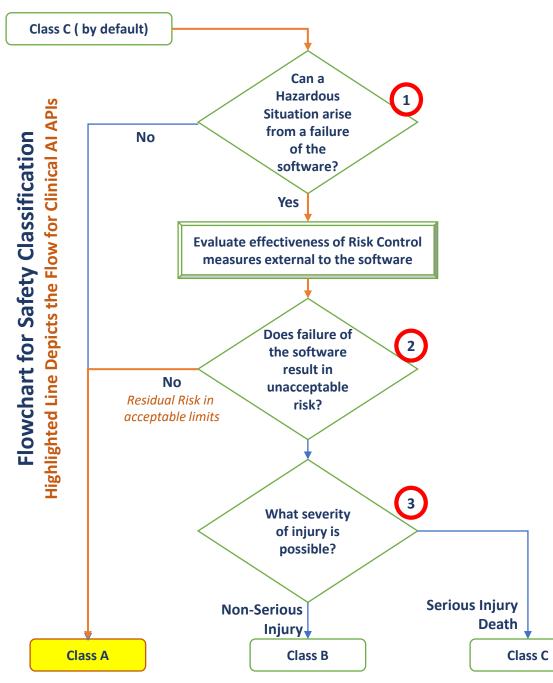
57 Specimen types

181 Organisms

152 Antibiotics


20+ Hospitals

4+ Years (Since 2019)


Country wide Prospective Cohorts with **20** Renowned Specialists

Using GPT : Architecture for Unit Discharge Summary Generation

IEC 62304 Process – Safety Classification of Clinical AI API

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - ISO 13485:2016

This is to certify that:

Apollo Hospitals Enterprises Limited Road No. 72 Film Nagar, Opposite Bharatiya Vidya Bhavan School Jubilee Hills Hyderabad, Telangana 500 096 India

Holds Certificate Number:

MD 763515

and operates a Quality Management System which complies with the requirements of ISO 13485:2016 for the following scope:

The Design, Development and Deployment of Artificial Intelligence based Application Programming Interfaces (APIs) for providing information by means of Clinical Decision Support for Cardiovascular Diseases, Prediabetes & Diabetes, Liver Fibrosis, Empirical Antibiotic Recommendation and Acute Exacerbation of COPD & Asthma.

For and on behalf of BSI:

Gange Stade

Gary E Slack, Senior Vice President - Medical Devices

Original Registration Date: 2022-02-28 Latest Revision Date: 2022-02-28

Effective Date: 2022-02-28 Expiry Date: 2025-02-27

Page: 1 of 1

...making excellence a habit."