Advancing Multimodal Vision-Language Learning / Faire Progresser L'apprentissage Multimodal de la Vision et du Langage

Aishwarya Agrawal

Assistant Professor @ UdeM and Mila Research Scientist @ DeepMind (one day a week)

Multimodal AI Research (MAIR) Lab

Oscar Mañas

Saba Ahmadi

Le Zhang

Sarvjeet Singh Ghotra

Rabiul Awal

Joining in Fall this year:

Kanishk Jain

Qian Yang

P Shravan Nayak

Vision-Language Tasks

Image Captioning

"A group of young people playing a game of Frisbee."

Visual Question Answering

Q: "What is the mustache made of?"

A: "bananas"

Vision-Language Tasks

Image Retrieval

"Grey haired man in black and yellow tie."

Image Generation

"Grey haired man in black and yellow tie."

Why vision and language?

- Intuitive:
 - Humans learn in multimodal settings
- Applications:
 - Aid to visually impaired users
 - Online shopping and organizing photos
 - Grounded virtual assistants

• Scientific:

- Visual recognition
- Language understanding
- Combining information across modalities
- Visio-linguistic compositional reasoning
- Commonsense and factual knowledge reasoning

Vision-Language Progress

DeepMind's Flamingo

	What breed is the dog?
P	It's a Samoyed.
	Is the dog running?
4	No, it's sitting.
	Can you describe the pose of its back legs?
P	The back legs are bent and the dog is sitting on its haunches.

Vision-Language Progress

a dolphin in an astronaut suit on saturn, artstation

a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

a teddy bear on a skateboard in times square

OpenAl's DALL.E 2 Link

- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation
- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

- Out-of-distribution generalization
- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation
- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

• • • •

- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation

. . .

- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

- Out-of-distribution generalization
- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation
- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

• • • •

- Out-of-distribution generalization
- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation
- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

• • • •

DeepMind

Reassessing Evaluation Practices in Visual Question Answering: A Case Study on Out-of-Distribution Generalization

Aishwarya Agrawal^{*,\$} Nematzadeh^{*,\$}

lvana Kajić*

Emanuele Bugliarello* Elnaz Davoodi^

Anita Gergely[^]

Phil Blunsom Aida

EACL 2023

, ^ denote equal contribution, ^{\$} denotes equal senior contribution

Progress on VQAv2 (Goyal et al., 2017)

- Is the VQA challenge solved?
 - No, we need to better evaluate our models
 - Are models learning to solve the task of VQA or the dataset?

IID vs OOD performance

• Large drop in performance for OOD evaluation

Slide credits: Ivana Kajić 15

Potential factors causing poor OOD generalization: A qualitative analysis

- Poor reasoning skills (logical, spatial, compositional)
 E.g., "Is the cheese to the right or to the left of the empty plate?"
- Overfitting to answer priors
 E.g., "What is the skateboarder wearing to protect his head?" → "helmet"
- Overfitting to question format
 E.g., "What animal ... ?", "What kind of animal ... ?" (GQA)
 45% accuracy drop
 "Who is ... ?", "What is ... ?" (VG)

- Out-of-distribution generalization
- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation
- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

• • • •

- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation

. . .

- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

Problem setup

What existing approaches do

- Finetune the entire language model [Dai et al. 2022, Hao et al. 2022]
- Insert and train adapter layers in the language model [<u>Eichenberg et al.</u> <u>2021</u>, <u>Alayrac et al. 2022</u>]
- Learn vision encoder from scratch [Tsimpoukelli et al. 2021]

Issues with existing approaches:

- Large number of trainable parameters (~40M to ~10B)
- Inserting adapter layers is not straightforward
- Learning vision encoder from scratch does not scale well with larger vision encoders

What we propose (published at EACL 2023)

- Reuse large pre-trained unimodal models while keeping them completely frozen and free of adapter layers
- Learn a lightweight mapping between the representation spaces of pretrained unimodal models.

Benefits of our approach:

- Orders of magnitude fewer parameters
- Can be trained in just a few hours
- Uses modest computational resources and public datasets
- Modular, hence easily extensible to newer/better pretrained unimodal models

Oscar Mañas

MAPL *****: method

Oscar Mañas

MAPL *****: method

Oscar Mañas

Slide credits: Oscar Mañas

D_=4096

MAPL *****: inference

0-shot image captioning.

2-shot VQA.

Oscar Mañas

MAPL# : experimental results

- MAPL achieves **superior or competitive** performance compared to similar methods while training orders of magnitude **fewer parameters**.
- MAPL is **more effective** than the baseline in **low-data** settings.
- MAPL is more effective than the baseline at in-domain learning.

	Trainable	Training	n-s	hot VQ	Av2	n-sh	ot OK-	VQA	n-sh	ot Text	/QA	n-shot	t VizWiz	-VQA	n-s	hot Ove	rall
	params	examples	0	4	8	0	4	8	0	4	8	0	4	8	0	4	8
	1		11				Exis	ting met	hods usi	ing dom	ain-agn	ostic tra	ining		1		
Frozen	40.3M [†]	3.3M	29.50	38.20	-	5.90	12.60	-		-	-	-	-	-	-	-	-
MAGMA CC12M	$243M^{\dagger}$	3.8M	36.90	45.40	-	13.90	23.40	-	-	-	-	5.60	10.60	-	-	-	-
VLKD CC3M	406M	3.3M	38.60	-	-	10.50	-	-	-	-	-	-	-	-	-	-	-
Flamingo	10.2B	>2.1B		-	-	50.60	57.40	57.50	35.00	36.50	37.30		-	-	-	-	-
	100% domain-agnostic training																
MAPL-blind _{CC-clean}	3.4M	374K	20.62	35.01	35.11	4.84	14.68	14.28	3.68	5.43	5.82	3.18	8.65	9.55	8.08	15.94	16.19
Frozen* _{CC-clean}	40.3M	374K	25.98	37.80	38.52	5.51	18.86	19.91	5.11	6.15	6.30	4.33	11.28	16.68	10.23	18.52	20.35
MAPL _{CC-clean}	3.4M	374K	33.54	45.13	45.21	13.84	24.25	23.93	8.26	8.88	8.77	11.72	18.46	19.52	16.84	24.18	24.36
	1							1%	6 domai	n-agnos	tic train	ing			1		
Frozen* _{CC-clean}	40.3M	3.7K	26.22	36.69	37.41	5.50	18.76	20.51	5.71	7.19	7.53	3.83	11.71	16.66	10.31	18.58	20.53
MAPL _{CC-clean}	3.4M	3.7K	30.80	37.38	37.95	8.77	18.18	19.15	6.40	7.07	7.74	5.68	9.26	10.58	12.91	17.97	18.85
								1	00% in	-domain	trainin	g			1		
PICa*	0	0	20.61	46.86	47.80	11.84	31.28	33.07	-	-	-	-	-	-	-	-	-
Frozen* COCO	40.3M	414K	32.09	38.90	39.42	9.81	20.72	21.83	7.54	6.82	6.74	5.87	12.07	17.35	13.82	19.63	21.33
Frozen* TextCaps	40.3M	103K	32.49	37.39	38.03	11.34	19.87	20.82	8.83	7.33	7.51	6.25	12.26	16.86	14.73	19.21	20.80
Frozen* VizWiz	40.3M	110K	26.93	37.38	37.91	5.85	19.12	20.64	6.38	7.44	7.47	5.57	13.06	18.06	11.18	19.25	21.02
MAPL COCO	3.4M	414K	43.51	48.75	48.44	18.27	31.13	31.63	10.99	11.10	11.08	14.05	17.72	19.18	21.70	27.17	27.58
MAPL TextCaps	3.4M	103K	38.83	43.34	43.43	16.33	25.07	25.92	22.27	19.53	19.75	12.31	16.69	18.18	22.43	26.15	26.82
MAPL VizWiz	3.4M	110K	32.80	42.94	43.20	11.70	24.91	25.73	9.27	10.36	10.23	10.42	20.63	23.10	16.05	24.71	25.56
									1% in-0	lomain t	training				1		
Frozen* COCO	40.3M	4.1K	30.18	37.23	37.89	9.33	19.60	20.71	7.43	7.65	7.67	4.37	12.00	16.48	12.83	19.12	20.69
Frozen* TextCaps	40.3M	1.0K	32.09	36.72	37.25	10.75	18.85	19.51	8.17	7.57	7.28	5.39	11.79	16.20	14.10	18.73	20.06
Frozen* vizwiz	40.3M	1.1K	29.62	37.30	37.87	7.57	19.36	20.60	7.16	7.17	7.25	4.53	12.51	17.56	12.22	19.08	20.82
MAPL COCO	3.4M	4.1K	37.69	40.42	40.84	13.92	21.66	22.41	8.30	6.96	6.84	6.94	10.72	12.43	16.71	19.94	20.63
MAPL TextCaps	3.4M	1.0K	33.57	36.70	36.87	12.46	17.45	18.21	9.34	8.29	8.62	6.54	9.58	11.62	15.48	18.00	18.83
MAPL VizWiz	3.4M	1.1K	31.88	36.81	37.04	9.59	17.64	17.64	7.25	5.99	6.04	4.73	9.48	11.33	13.36	17.48	18.01

ArXiv: https://arxiv.org/abs/2210.07179

Oscar Mañas

- Out-of-distribution generalization
- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation
- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

• • • •

- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation

. . .

- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

Visio-Linguistic Compositional Reasoning

(a) some plants surrounding a lightbulb

(b) a lightbulb surrounding some plants

[Thrush et al. CVPR 2022]

Visual Genome Relation

Assessing relational understanding (23,937 test cases)

✓ the horse is eating the grassX the grass is eating the horse

A1. Is the tray on top of the table black or light brown? light brown
A2. Are the napkin and the cup the same color? yes
A3. Is the small table both oval and wooden? yes
A4. Is there any fruit to the left of the tray the cup is on top of? yes
A5. Are there any cups to the left of the tray on top of the table? no
B1. What is the brown animal sitting inside of? box
B2. What is the large container made of? cardboard
B3. What animal is in the box? bear
B4. Is there a bag to the right of the green door? no
B5. Is there a box inside the plastic bag? no

[Hudson et al. CVPR 2019]

[Yuksekgonul et al. ICLR 2023]

What existing approaches do

1. **Create** hard-negative sentences and images

2. **Contrast** them against correct image-caption pairs

NegCLIP approach from Yuksekgonul et al. ICLR 2023

Add strong alternative images

What we propose – training time approach

(work in progress)

3. Additionally **contrast** hard-negative **sentences** against correct **sentences**

4. Add **rank loss** between correct and hard-negative image-text pairs

What we propose – training time approach

(work in progress)

3. Additionally **contrast** hard-negative **sentences** against correct **sentences**

4. Add **rank loss** between correct and hard-negative image-text pairs

5. Use **adaptive margin** for the rank loss – **curriculum learning**

Experimental Results

• We **outperform** existing methods **significantly** in both relation and attribution understanding.

Model	VG-Relation	VG-Attribution	
Random Chance	50.00	50.00	
CLIP	59.28	62.86	·
NegCLIP [22]	80.22	70.46	
Ours itc	61.46	65.80	
Ours itc(hn)	79.28	70.26	
Ours itc+rank	79.59	+2.5% 69.23	+5.9%
Ours itc+tec	81.11	71.70	
Ours itc(hn)+rank	81.34	72.24	
Ours itc(hn)+tec	81.92	74.54	
Ours itc(hn)+tec+rank	82.70	76.31	

Table 1. Results on the ARO dataset across the combination of losses. *itc* represents finetune model on COCO dataset without generated negatives, *itc(hn)* represents finetune with generated negatives using $\mathcal{L}_{itm(hn)}$

Le Zhang

Experimental Results

• We **outperform** existing methods **significantly** in both relation and attribution understanding.

• Ablation studies show that **both proposed losses are effective** for learning compositionality

Model	VG-Relation	VG-Attribution
Random Chance	50.00	50.00
CLIP	59.28	62.86
NegCLIP [22]	80.22	70.46
Ours itc	61.46	65.80
Ours itc(hn)	79.28	70.26
Ours itc+rank	79.59	69.23
Ours itc+tec	81.11	71.70
Ours itc(hn)+rank	81.34	72.24
Ours itc(hn)+tec	81.92	74.54
Ours itc(hn)+tec+rank	82.70	76.31

Table 1. Results on the ARO dataset across the combination of losses. *itc* represents finetune model on COCO dataset without generated negatives, *itc(hn)* represents finetune with generated negatives using $\mathcal{L}_{itm(hn)}$

What we propose – inference time approach

(work in progress)

Image 0

- Prompt the model to generate a caption for the image.
- Feed the generated caption along with the question.

Image 1

Caption 1 the taller person [eats food] and the shorter person [chops food]

Question 1: Does the taller person eat

Rabiul Awal

Le Zhang

 food and the shorter person eat food?
 food and the shorter person chop food?

 Question Template: Answer the following question. <question>

 Caption Template: A photo of <caption>

Answer the following question. Does the taller person chop food and the shorter person eat food? Answer: no

CAPTION-QAA photo of a son is eating while father is preparing food. Answer the
following question. Does the taller person chop food and the shorter
person eat food?Answer: yes

Improving compositional reasoning through effective prompting

GQA

- Zero-shot Prompting for VLMs is underexplored
- Effective prompts can improve eliciting proper response on a given question
- An image description e.g. caption can provide additional visual cues in the text-encoder (chain-of-thought prompting)

Rabiul Awal Le Zhang

What we propose – inference time approach

(work in progress)

- Image-caption prompting significantly improves the performance on Winoground-QA.
- The caption should contain information relevant to the question.

Model Name	Prompt Name	STA	NDARD-	QA	CAPTION-QA		
		Group	$Q_0 2I$	$Q_1 2I$	Group	$Q_0 2I$	$Q_1 2I$
	AnswerFollowingYNQuestion / describeTheImage	4.0	17.5	22.0	4.25	16.5	21.5
BLIP2 FLAN-T5 _{XL}	doesItDescribeImage / inThisImage	5.25	21.75	22.75	8.25	25.5	27.2
	isTrueAboutImageAnswerYN / describeTheScene	5.75	19.75	22.0	8.75	27.75	25.5
	AnswerFollowingYNQuestion / describeTheScene	7.25	22.5	24.25	10.25	28.75	28.0
BLIP2 FLAN-T5XXL	doesItDescribeImage / aPhotoOf	5.25	18.5	23.7	8.75	26.25	27.7
	isTrueAboutImageAnswerYN / describeTheImage	6.0	20.0	22.75	9.5	24.75	28.5
BLIP-VQA	-	6.75	25.5	22.0	-	-	-
Random chance	-	6.25	25	25	6.25	25	25

Rabiul Awal Le

Le Zhang

- Out-of-distribution generalization
- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation
- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

• • • •

- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation

. . .

- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

38

Robust Automatic Evaluation

- Evaluating image captioning is difficult!
- Existing metrics rely on n-gram matches between candidate and reference captions.
- Recently, reference-free metrics have been proposed – <u>CLIPScore</u>, <u>UMIC</u>.

[Hessel et al. EMNLP 2021]

Robust Automatic Evaluation (work in progress)

Recently proposed reference-free image-captioning metrics are not robust enough!

- They fail to recognize **fine-grained differences** between correct and incorrect captions.
- They have poor understanding of **negation**.

They are biased by the length of the captions.	Captions	CLIPScore	UMIC
	The title of the book is topology.	0.62	0.19
	The title of the book is muffin.	0.74	0.62

Saba Ahmadi

Robust Automatic Evaluation (work in progress)

Recently proposed reference-free image-captioning metrics are not robust enough!

• CLIPScore is more sensitive (than UMIC) to the **number and size of objects** mentioned in the caption.

Captions	CLIPScore	UMIC
Small Object: There is a knife.	0.62	0.36
Big Object: There is a pizza.	0.72	0.34

Saba Ahmadi

Robust Automatic Evaluation (work in progress)

Recently proposed reference-free image-captioning metrics are not robust enough!

- CLIPScore is more sensitive (than UMIC) to the **number and size of objects** mentioned in the caption.
- CLIPScore is indifferent to the **sentence structure**.

CLIPScore	UMIC
0.62	0.36
0.72	0.34
0.63	0.19
0.74	0.18
	CLIPScore 0.62 0.72 0.63 0.74

Saba Ahmadi

Robust Automatic Evaluation

- CLIPScore shows high sensitivity to the number of image-relevant objects mentioned in the caption while UMIC is not notably sensitive to it.
- Both metrics are sensitive to the size of image-relevant objects mentioned in the caption; however, CLIPScore increases with size while UMIC decreases.
- While visual grounding remained the same and we shuffled the sentences, interestingly UMIC was sensitive to sentence structure, whereas CLIPScore was not.

1			All States	
	rt.			
. Sinta	1.27			
				1
19			GAR	51
		9		
	1			7
Mein	ATEN]		Ele	
			In	1.
		Contraction of the local division of the loc		

Captions	CLIPScore [Hessel et al. EMNLP 2021]	UMIC [Lee et al. ACL 2021]
There is a person.	0.536	0.143
There is a person and a sports ball.	0.639	0.156
There is a person, a sports ball and a baseball bat.	0.746	0.150

	Captions	CLIPScore [Hessel et al. EMNLP 2021]	UMIC [Lee et al. ACL 2021]
	Small Object: There is a knife.	0.619	0.363
	Big Object: There is a pizza.	0.721	0.336
	Shuffled Small Object: A there knife is.	0.631	0.193
	Shuffled Big Object: A there pizza is.	0.740	0.180

Object-size and sentence structure

- Out-of-distribution generalization
- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation

- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

Thanks! Questions?

- Parameter-efficient learning
- Visio-linguistic compositional reasoning
- Robust automatic evaluation

. . .

- Common sense and factual knowledge reasoning
- Interpretability and explainability
- Overcoming spurious correlations and biases in data

Thanks! Questions?