Humans & AI - on the Road and in the Operating Room A Contrastive Outlook

Guy Rosman

Research - Domains (behavior)

	Driving	Minimally Invasive Surgical
Data	Perception results from from LiDAR, Cameras, localization	Surgical video Robot kinematics
State space	Vehicle state, control signals	phases, action triplets, tasks, *
Ego agent	Driver	Surgeon
Machine role	Drive, Share-control, Warn	Assistive
Annotation	Useful	Crucial
Observability	Pretty good	Partial

* <u>SAGES consensus recommendations on an annotation framework for surgical video</u>, Surg. Endoscopy, 2022

AI Winters

- Winter I (60-70s)
 - ALPAC report, Lighthill report
 - CMU SUR project
 - DARPA focus shift towards mission-guided
- Winter II (80-90s)
 - LISP machines
 - Lack of progress on symbolic AI
 - DARPA Strategic Computing project
- Instance of hype curve
- Autonomous driving?
- What's different this time?
 - The fallback is better
 - In some domains, commercially viable

Trough of Disillusionment

TIME

Technology Trigger

Human-Centric Al

- How AI affects humans?
 - Fairness & ethics
 - Social implications
 - Economy implications
- How humans can interact with AI?
 - Explainability
 - Interfaces,
 - Cooperation
 - Co-adaptation

Al on the Road

AI on the Road

- Understanding the environment
- Understanding people
- Interacting with people
 - Driver
 - Other road users

Behavior Prediction

- Includes
 - The car you're driving, External cars
 - Not just cars
- Conditioned on all past inputs
 - Past trajectory, Map, Sensors
 - Vehicle data
- Data-driven

Uncertainty-Aware Driver Trajectory Prediction at Urban Intersections, X. Huang, S.G. McGill, B.C. Williams, L. Fletcher, G. Rosman, ICRA 2019 TIP: Task-Informed Motion Prediction for Intelligent Vehicles, X. Huang, G. Rosman, A. Jasour, S.G. McGill, J.J. Leonard, B.C. Williams, IROS 2022 Vehicle Trajectory Prediction Using Generative Adversarial Network With Temporal Logic Syntax Tree Features. X. Li, G. Rosman, I. Gilitschenski, C-I Vasile, J. A. DeCastro, S. Karaman, D. Rus, RA-L, 2021

Behavior Prediction

- Includes
 - The car you're driving, External cars
 - Not just cars
- Conditioned on all past inputs
 - Past trajectory, Map, Sensors
 - Vehicle data
- Data-driven

Behavior Prediction

Patterns

- Inductive Biases
- What is legal?
- What is good?
- What is normal?
- What is abnormal?

DiversityGAN: Diversity-Aware Vehicle Motion Prediction via Latent Semantic Sampling, X. Huang, S.G. McGill, J.A. DeCastro, L. Fletcher, J.J. Leonard, B.C. Williams, G. Rosman, RA-L, 2020 Vehicle Trajectory Prediction Using Generative Adversarial Network With Temporal Logic Syntax Tree Features. X. Li, G. Rosman, I. Gilitschenski, C-I Vasile, J. A. DeCastro, S. Karaman, D. Rus, RA-L, 2021 Trajectory Prediction with Linguistic Representations, Y-L. Kuo, X. Huang, A. Barbu, S.G. McGill, B. Katz, J.J. Leonard, G. Rosman, ICRA 2022

Driver Understanding

Given a rough estimate of where the driver is looking

- What they are looking at?
- What have they attended to?

Surgical AI

Gastrocolic Ligament Dissection

Stapling Inspection

Surgical Al

- Still far from the vision of data-driven medicine
- Mixture of best practices and initial AI situational awareness

Artificial Intelligence in Surgery: Promises and Perils, D.A. Hashimoto, G. Rosman, D. Rus, O.R. Meireles, Ann. Surg., 2018

AI and Minimally Invasive Surgery

- Field of view defines the surgeon's observations *the information is there*
- Field of view very partial partial observability
 - Stateful reasoning over the timeline long term context
 - Consider reasoning about polyps in colonoscopy
 - EMR as the context
- Specific taxonomy and labels set.
 - Parkland grading scale, critical view of safety in lap-chole's
 - Tools, actions, tissues, tasks, phases,...

AI and Minimally Invasive Surgery

• Situation Awareness

- Which phase, task, action,.. are we at?
- What do we see tools, tissues,...
- What are the temporal, spatial patterns?

Computer Vision Analysis of Intraoperative Video: Automated Recognition of Operative Steps in Laparoscopic Sleeve Gastrectomy, D.A. Hashimoto, G. Rosman, E.R. Witkowski, C. Stafford, A.J. Navarrete-Welton, D.W. Rattner, K.D. Lillemoe, D.L. Rus, O.R. Meireles, Ann. Surg., 2020 Automated operative phase identification in peroral endoscopic myotomy, T.M. Ward, D.A. Hashimoto, Y. Ban, D.W. Rattner, H. Inoue, K.D. Lillemoe, D.L. Rus, G. Rosman, O.R. Meireles, Surg.

Endo., 2020 Aggregating Long-Term Context for Learning Surgical Workflows, Y. Ban , G. Rosman, T.W. Ward, D.A. Hashimoto, T. Kondo, O.R. Meireles, D. Rus, ICRA, 2021

AI and Minimally Invasive Surgery

Prediction - what is going to happen?

- Remaining surgical time
- Next phases and transitions

Artificial intelligence prediction of cholecystectomy operative course from automated identification of gallbladder inflammation, T.M. Ward, D.A. Hashimoto, Y. Ban, G. Rosman & O.R. Meireles, Surg. Endo., 2022

SUPR-GAN: SUrgical PRediction GAN for Event Anticipation in Laparoscopic and Robotic Surgery, Y. Ban, G. Rosman, J.A. Eckhoff, T.M. Ward, D.A. Hashimoto, T. Kondo, H. Iwaki, O.R. Meireles, D. Rus, RA-L, 2022

Explainable Surgical AI

How do we understand surgical videos?

- What semantic entities we have?
- How they relate?
- Can we extract them? Can we use them?

Can we build an extensible AI framework to capture that structure?

Outlook

- Several exciting avenues for impact
- Depends a lot on the human context
- Several emerging technological trends,

each with its own limitation

 How we use data matters on capabilities; on societal impact

"We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run"

(Roy Amara)